Sindélia S Freitas

Learn More
The ability to isolate sc (supercoiled) pDNA (plasmid DNA) isoform should be one of the features of a pDNA purification process, eliminating sample contaminants such as RNA, gDNA (genomic DNA), proteins and endotoxins. A process is described that uses a single histidine-agarose chromatography step to purify sc pDNA from other isoforms and Escherichia coli(More)
Robust cGMP manufacturing is required to produce high-quality plasmid DNA (pDNA). Three established techniques, isopropanol and ammonium sulfate (AS) precipitation (PP), tangential flow filtration (TFF) and aqueous two-phase systems (ATPS) with PEG600/AS, were tested as alternatives to recover pDNA from alkaline lysates. Yield and purity data were used to(More)
Micrometre-sized aggregates of a 6050-bp plasmid obtained by the addition of 1.5-3.0 mM CaCl2 and 20% (v/v) t-butanol or 0.3-1.0% (v/v) APG (aluminium phosphate gel) were subjected to degradation induced by sonication or vortex flows. Dynamic light scattering revealed that the plasmid hydrodynamic radius increases from 116 nm to >1300 nm and approx. 1000(More)
The number of studies on gene therapy using plasmid vectors (pDNA) has increased in recent years. As a result, the demand for preparations of pDNA in compliance with recommendations of regulatory agencies (EMEA, FDA) has also increased. Plasmid DNA is often obtained through fermentation of transformed Escherichia coli and purification by a series of unit(More)
  • 1