Learn More
Among the most promising chemopreventive agents, certain natural polyphenols have recently received a great deal of attention because of their demonstrated inhibitory activity against tumorigenesis. In view of their anticancer properties, these compounds also hold great promise as potential chemotherapeutic agents. However, to translate these(More)
Epidemiological data and in vitro studies on cancer chemoprevention by tea polyphenols have gained attention recently from the scientific community, nutritionists, the pharmaceutical industry, and the public. Despite the several efforts made recently to elucidate the molecular basis for the anticancer activity of these natural products, little correlation(More)
A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the(More)
Bid is a key member of the Bcl-2 family proteins involved in the control of the apoptotic cascade in cells, leading to cell death. Uncontrolled cell death is associated with several human pathologies, such as neurodegenerative diseases and ischemic injuries. Therefore, Bid represents a potential yet unexplored and challenging target for strategies aimed at(More)
To avoid detection and targeting by the immune system, the plague-causing bacterium Yersinia pestis uses a type III secretion system to deliver a set of inhibitory proteins into the cytoplasm of immune cells. One of these proteins is an exceptionally active tyrosine phosphatase termed YopH, which paralyzes lymphocytes and macrophages by dephosphorylating(More)
Furin plays a crucial role in embryogenesis and homeostasis and in diseases such as Alzheimer's disease, cancer, and viral and bacterial infections. Thus, inhibition of furin may provide a feasible and promising approach for therapeutic intervention of furin-mediated disease mechanisms. Here, we report on a class of small molecule furin inhibitors based on(More)
The mammalian target of rapamycin (mTOR) is a protein that is intricately involved in signaling pathways controlling cell growth. Rapamycin is a natural product that binds and inhibits mTOR function by interacting with its FKBP-rapamycin-binding (FRB) domain. Here we report on the NMR solution structure of FRB and on further studies aimed at the(More)
Pressure effects on the backbone dynamics of a native basic pancreatic trypsin inhibitor (BPTI) have been measured by (15)N spin relaxation and chemical shifts at 30 and 2000 bar. The experiments utilized the on-line variable pressure cell nuclear magnetic resonance system on (15)N-uniformly labeled BPTI at a proton frequency of 750.13 MHz at 36 degrees C.(More)
Epidemiological data and in vitro studies on cancer chemoprevention by tea polyphenols have gained attention recently from the scientific community, nutritionists, the pharmaceutical industry, and the public. Despite the several efforts made recently to elucidate the molecular basis for the anticancer activity of these natural products, little correlation(More)
A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the(More)