Sin-jung Park

Learn More
Nanoparticle-based diagnosis-therapy integrative systems represent an emerging approach to cancer treatment. However, the diagnostic sensitivity, treatment efficacy, and bioavailability of nanoparticles as well as the heterogeneity and drug resistance of tumors pose tremendous challenges for clinical implementation. We herein report on the fabrication of(More)
In order to design a water soluble polymeric photosensitizer (WPS) with controllable photoactivity, a nano-photosensitizer (NPS) was prepared from a polyelectrolyte complex between polyethylene glycol-polyethylenimine-chlorine e6 conjugate (PEG-PEI-Ce6) and Black Hole Quencher-3 chondroitin sulfate conjugate (BHQ-3-CS). NPSs have a unimodal size(More)
In order to obtain feasibility data regarding the possibility of using chondroitin sulfate (CS) in an anti-cancer drug delivery system, CS was chemically modified by a one-step process with acetic anhydride. Although 3 samples with different degrees of acetylation were synthesized, only the sample with the highest degree of acetylation (AC-CS3) was tested(More)
The endolysosome is a major barrier for the effective intracellular delivery by conventional nanocarriers. Herein, we demonstrate that endolysosome environment-responsive photodynamic nanocarriers (EPNs) are capable of encapsulation of the hydrophobic drug paclitaxel (PTX) and photosensitizer (PS)-mediated ELB disruption for effective cancer therapy. EPNs(More)
To improve the transfection efficiency of non-viral gene vectors to human mesenchymal stem cells (hMSCs), a photosensitizer (PS)-induced gene delivery system was designed by using pheophorbide-a (pheo-a) as a PS. In FACS results, this system showed excellent gene transfection efficiency depending on irradiation power. The result was strongly supported by(More)
A photo-activatable ternary complex (PTC) consisting of multifunctional shielding material (MSM) with photosensitizer (PS)-conjugated chondroitin sulfate and polyethyleneimine based binary complexes containing epidermal growth factor receptor (EGFR)-shRNA delivery for CD44 targeted cancer therapy has been developed. The PTC has a negative surface charge of(More)
Photodynamic therapy (PDT) is a widely used clinical option for tumor therapy. However, the clinical utilization of conventional small-molecule photosensitizers (PSs) for PDT has been limited by their low selectivity for disease sites, and undesirable photoactivation. To overcome these limitations, we demonstrated a tumor-specific and(More)
We developed a thermoswitchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophorbide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose. Self-quenched PS molecules linked in close proximity by π-π stacking in T-PPS were easily transited to an active monomeric state by the temperature-induced phase(More)
To deliver efficiently osteogenic, chondrogenic or adipogenic induction genes, such as Runx2, SOX9 and C/EBP-α, to adipose tissue-derived stem cells (ADSCs), a photo-mediated nanocomplex internalization gene delivery system was designed using chlorin e6 as a photosensitizer (PS) and polyethyleneimine (PEI) as a gene delivery carrier. In this system, gene(More)
The accurate diagnosis and proper therapy for cancer are essential to improve the success rate of cancer treatment. Here, we demonstrated that the vitamin Bc -bearing hydrophilic photosensitizer conjugate folic acid-polyethylene glycol-pheophorbideA (FA-PEG-PheoA) has been synthesized for the intracellular diagnosis and photodynamic therapy of a tumor. The(More)