Simonetta Russo

Learn More
Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with(More)
The Eph receptor-ephrin system is an emerging target for the development of novel antiangiogenetic agents. We recently identified lithocholic acid (LCA) as a small molecule able to block EphA2-dependent signals in cancer cells, suggesting that its (5β)-cholan-24-oic acid scaffold can be used as a template to design a new generation of improved EphA2(More)
The Eph-ephrin system, including the EphA2 receptor and the ephrinA1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist that is able to inhibit EphA2 receptor activation; it is therefore potentially useful as a novel(More)
The EPH receptor A2 (EPHA2) represents an attractive anticancer target. With the aim to identify novel EPHA2 receptor antagonists, a virtual screening campaign, combining shape-similarity and docking calculations, was conducted on a set of commercially available compounds. A combined score, taking into account both ligand- and structure-based results, was(More)
The Eph-ephrin system plays a critical role in tumor growth and vascular functions during carcinogenesis. We had previously identified cholanic acid as a competitive and reversible EphA2 antagonist able to disrupt EphA2-ephrinA1 interaction and to inhibit EphA2 activation in prostate cancer cells. Herein, we report the synthesis and biological evaluation of(More)
Lithocholic acid (LCA), a physiological ligand for the nuclear receptor FXR and the G-protein-coupled receptor TGR5, has been recently described as an antagonist of the EphA2 receptor, a key member of the ephrin signalling system involved in tumour growth. Given the ability of LCA to recognize FXR, TGR5, and EphA2 receptors, we hypothesized that the(More)
The free-energy surface (FES) of protein-ligand binding contains information useful for drug design. Here we show how to exploit a free-energy minimum of a protein-ligand complex identified by metadynamics simulations to design a new EphA2 antagonist with improved inhibitory potency.
Metadynamics (META-D) is emerging as a powerful method for the computation of the multidimensional free-energy surface (FES) describing the protein-ligand binding process. Herein, the FES of unbinding of the antagonist N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan (UniPR129) from its EphA2 receptor was reconstructed by META-D simulations. The(More)
We have attempted to detect binding of N-acetylglucosamine (NAG) to alpha-lactalbumin, the B protein of lactose synthetase, under conditions in which binding of NAG to lysozyme, a protein to which alpha-lactalbumin has a significant sequence homology, is observed. Using 1H nuclear magnetic resonance spectroscopy, uv difference spectroscopy, competition of(More)
Amino acid conjugates of lithocholic acid (LCA) have been recently described as effective disruptors of the EphA2-ephrin-A1 interaction able to inhibit EphA2 phosphorylation in intact cells and thus able to block prometastatic responses such as cellular retraction and angiogenesis. However, these LCA-based compounds were significantly more potent at(More)
  • 1