Simone Schmid

Learn More
Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the(More)
Deleted in liver cancer 1 (DLC1) is a Rho-GTPase-activating protein (GAP) that is downregulated in various tumor types. In vitro, DLC1 specifically inactivates the small GTPases RhoA, RhoB and RhoC through its GAP domain and this appears to contribute to its tumor suppressor function in vivo. Molecular mechanisms that control DLC1 activity have not so far(More)
Deleted in liver cancer (DLC) 1 and 2 are Rho GTPase-activating proteins that are frequently down-regulated in various types of cancer. Ectopic expression in carcinoma cell lines lacking these proteins has been shown to inhibit cell migration and invasion. However, whether the loss of DLC1 or DLC2 is the cause of aberrant Rho signaling in transformed cells(More)
To characterize molecular mechanisms regulating snail cellular immune responses, the contributions of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3-K) were examined in hemocytes of the trematode intermediate host snails Biomphalaria glabrata and Lymnaea stagnalis. Simultaneous measurement of phagocytosis/encapsulation and(More)
Deregulated molecular signaling pathways are responsible for the altered adhesive, migratory, and invasive properties of cancer cells. The different breast cancer subtypes are characterized by the expression of distinct miRNAs, short non-coding RNAs that posttranscriptionally modulate the expression of entire gene networks. Profiling studies have revealed(More)
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel(More)
StarD10 is a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes in vitro. We now provide evidence that, in vivo, StarD10 is phosphorylated on serine 284. This novel phosphorylation site was identified by tandem mass spectrometry of immunoaffinity-purified StarD10 from lysates of(More)
Deleted in Liver Cancer 1 (DLC1) is a GTPase-activating protein (GAP) with specificity for RhoA, RhoB, and RhoC that is frequently deleted in various tumor types. By inactivating these small GTPases, DLC1 controls actin cytoskeletal remodeling and biological processes such as cell migration and proliferation. Here we provide evidence that DLC1 binds to(More)
Triple-negative breast cancers (TNBC) are especially refractory to treatment due to their negative hormone receptor and ErbB2/HER2 status. Therefore, the identification of cancer-associated deregulated signaling pathways is necessary to develop improved targeted therapies. Here, we show that expression of the ceramide transfer protein CERT is reduced in(More)
The growth factor heregulin (HRG) potently stimulates epithelial cell survival and proliferation through the binding of its cognate receptor ErbB3 (also known as HER3). ErbB3-dependent signal transmission relies on the dimerization partner ErbB2, a receptor tyrosine kinase that is frequently overexpressed and/or amplified in breast cancer cells. Substantial(More)