Simone Martini

Learn More
Notch signaling is a key regulator of cell-fate decisions and is essential for proper neuroectodermal development. There, it favors the formation of ectoderm, promotes maintenance of neural stem cells, inhibits differentiation into neurons, and commits neural progenitors to a glial fate. In this report, we explore downstream effects of Notch important for(More)
— In this paper we study decentralized, networked systems whose interaction dynamics are given by a nearest-neighbor averaging rule. By letting one node in the network take on the role of a leader in the sense that this node provides the control input to the entire system, we can ask questions concerning the controllability. In particular, we show that the(More)
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In(More)
BACKGROUND Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS To analyze how Notch(More)
— This paper addresses an aspect of controllability in a single-leader network when the agents are homogeneous. In such a network, indices are not assigned to the individual agents and controllability, which is typically a point to point property, now becomes a point to set property, where the set consists of all permutations of the target point. Agent(More)
The paper considers the problem of driving a formation of autonomous mobile agents. The group of mobile devices is represented by a leader-follower network, where the followers update their position using a simple local consensus procedure, while the leaders, whose positions represent the control inputs of the network, are free to move. We characterize the(More)
In this paper we show how the decentralized estimation of the spectrum of a network can be used to infer its controllability and observability properties. The proposed approach is applied to networked multi-agent systems whose local interaction rule is based on Laplacian feedback. We provide a decentralized necessary and sufficient condition for(More)
This paper addresses the clock synchronization problem in a wireless sensor network (WSN) and proposes a distributed solution that consists of a form of consensus, where agents are able to exchange data representing intervals or sets. The solution is based on a centralized algorithm for clock synchronization, proposed by Marzullo, that determines the(More)
In this paper we study the convergence towards consensus on information in a distributed system of agents communicating over a network. The particularity of this study is that the information on which the consensus is seeked is not represented by real numbers, rather by logical values or compact sets. Whereas the problems of allowing a network of agents to(More)
In this paper, we address decision making problems, depending on a set of input events, with networks of dynamic agents that have partial visibility of such events. Previous work by the authors proposed so-called logical consensus approach, by which a network of agents, that can exchange binary values representing their local estimates of the events, is(More)