Simone Lorenzi

  • Citations Per Year
Learn More
On route toward a novel de novo design program, called LiGen, we developed a docking program, LiGenDock, based on pharmacophore models of binding sites, including a non-enumerative docking algorithm. In this paper, we present the functionalities of LiGenDock and its accompanying module LiGenPocket, aimed at the binding site analysis and structure-based(More)
A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o-(More)
Three-dimensional homology models of human MT(1) and MT(2) melatonin receptors were built with the aim to investigate the structure-activity relationships (SARs) of MT(2) selective antagonists. A common interaction pattern was proposed for a series of structurally different MT(2) selective antagonists, which were positioned within the binding site by(More)
Racemic N-(8-methoxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-10-ylmethyl)acetamide (compound 5) was previously identified as a novel selective MT(2) antagonist fulfilling the requirements of pharmacophore and 3D QSAR models. In this study the enantiomers of 5 were separated by medium-pressure liquid chromatography and behaved as the racemate. Compound 5(More)
Inhibition of histone deacetylases (HDACs) leads to growth arrest, differentiation, or apoptosis of tumor cell lines, suggesting HDACs as promising targets for cancer therapy. At present, only one HDAC inhibitor (HDACi) is used in therapy: suberoylanilide hydroxamic acid (SAHA). Here, we describe the synthesis and biological evaluation of a new series of(More)
A number of cellular processes, as cell proliferation, apoptosis and cytoskeleton assembly [1], are regulated by enzymes belonging to the family of histone deacetylases (HDACs). Extended or local changes in chromatin structure are driven by an interplay between histone acetyltransferases (HATs) and HDACs, and both of enzymes are involved in(More)
Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design(More)
With regard to ctl evasion, tumour losses of mhci have been thoroughly studied (our group has more than 200 papers on file) and have, in most instances (although not invariably), been associated with poor outcome (reviewed in Garrido et al. 2). Interestingly, the principle of mhc-i loss also applies to the members of the so-called antigen-processing(More)
Histamine H(3) receptor is a G protein-coupled receptor whose activation inhibits the synthesis and release of histamine and other neurotransmitters from nerve endings and is involved in the modulation of different central nervous system functions. H(3) antagonists have been proposed for their potential usefulness in diseases characterized by impaired(More)
A class of rigid, dibasic, non-imidazole H3 antagonists was developed, starting from a series of previously described flexible compounds. The original polymethylene chain between two tertiary amine groups was replaced by a rigid scaffold, composed by a phenyl ring or a biphenyl fragment. Modulation of the distance between the two amine groups, and of their(More)
  • 1