Simone Hennerbichler

Learn More
Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through(More)
The human amniotic membrane (hAM), thanks to its favorable properties, including anti-inflammatory, anti-fibrotic and pro-regenerative effects, is a well-known surgical material for many clinical applications, when used both freshly after isolation and after preservation. We have shown previously that hAM patching is a potential approach to counteract liver(More)
  • Denys J. Loeffelbein, Nils H. Rohleder, Matthias Eddicks, Claudia M. Baumann, Mechthild Stoeckelhuber, Klaus-D. Wolff +4 others
  • 2014
Human amniotic membrane (HAM) has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG) donor sites in a swine model (Part A) and a clinical trial (Part B). Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically(More)
Human amniotic membrane (hAM) represents a tissue that is well established as biomaterial in the clinics with potential for new applications in regenerative medicine. For tissue engineering (TE) strategies, cells are usually combined with inductive factors and a carrier substrate. We have previously recognized that hAM represents a natural, preformed sheet(More)
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to(More)
According to the European Pharmacopoeia sterility testing of products includes an incubation time of 14 days in thioglycollate medium and soya-bean casein medium. In this case a large period of time is needed for product testing. So we designed a study to evaluate an alternative method for sterility testing. The aim of this study was to reduce the(More)
  • 1