Learn More
A sophisticated interplay between the static properties of the ribosomal exit tunnel and its functional role in cotranslational processes is revealed by constraint counting on topological network representations of large ribosomal subunits from four different organisms. As for the global flexibility characteristics of the subunit, the results demonstrate a(More)
RNA requires conformational dynamics to undergo its diverse functional roles. Here, a new topological network representation of RNA structures is presented that allows analyzing RNA flexibility/rigidity based on constraint counting. The method extends the FIRST approach, which identifies flexible and rigid regions in atomic detail in a single, static,(More)
The ribosome is a large ribonucleoprotein complex that carries out protein synthesis in all kingdoms of life by translating genetic information encoded in mRNA into the amino acid sequence of a protein. The nascent poly-peptides escape the peptidyl transferase center through the ribosomal exit tunnel that spans the entire large subunit. The tunnel is(More)
There is growing interest in molecular recognition processes of RNA because of RNA's widespread involvement in biological processes. Computational approaches are increasingly used for analysing and predicting binding to RNA, fuelled by encouraging progress in developing simulation, free energy and docking methods for nucleic acids. These developments take(More)
We report all-atom molecular dynamics and replica exchange molecular dynamics simulations on the unbound human immunodeficiency virus type-1 (HIV-1) transactivation responsive region (TAR) RNA structure and three TAR RNA structures in bound conformations of, in total, approximately 250 ns length. We compare the extent of observed conformational sampling(More)
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have(More)
PfSUB1, a subtilisin-like protease of the human malaria parasite Plasmodium falciparum, is known to play important roles during the life cycle of the parasite and has emerged as a promising antimalarial drug target. In order to provide a detailed understanding of the origin of binding determinants of PfSUB1 substrates, we performed molecular dynamics(More)
Protein kinases are involved in a variety of diseases including cancer, inflammation, and autoimmune disorders. Although the development of new kinase inhibitors is a major focus in pharmaceutical research, a large number of kinases remained so far unexplored in drug discovery projects. The selection and assessment of targets is an essential but challenging(More)
Fast and accurate identification of active compounds is essential for effective use of virtual screening workflows. Here, we have compared the ligand-ranking efficiency of the linear interaction energy (LIE) method against standard docking approaches. Using a trypsin set of 1549 compounds, we performed 12,250 molecular dynamics simulations. The LIE method(More)
The emergence of multidrug-resistant pathogens will make current antibiotics ineffective. For linezolid, a member of the novel oxazolidinone class of antibiotics, 10 nucleotide mutations in the ribosome have been described conferring resistance. Hypotheses for how these mutations affect antibiotics binding have been derived based on comparative(More)