Simone Fulle

Learn More
RNA requires conformational dynamics to undergo its diverse functional roles. Here, a new topological network representation of RNA structures is presented that allows analyzing RNA flexibility/rigidity based on constraint counting. The method extends the FIRST approach, which identifies flexible and rigid regions in atomic detail in a single, static,(More)
A sophisticated interplay between the static properties of the ribosomal exit tunnel and its functional role in cotranslational processes is revealed by constraint counting on topological network representations of large ribosomal subunits from four different organisms. As for the global flexibility characteristics of the subunit, the results demonstrate a(More)
RNA structures are highly flexible biomolecules that can undergo dramatic conformational changes required to fulfill their diverse functional roles. Constraint counting on a topological network representation of an RNA structure can provide very efficiently detailed insights into the intrinsic flexibility characteristics of the biomolecule. In the network,(More)
Flexibility characteristics of biomacromolecules can be efficiently determined down to the atomic level by a graph-theoretical technique as implemented in the FIRST (Floppy Inclusion and Rigid Substructure Topology) and ProFlex software packages. The method has been successfully applied to a series of protein and nucleic acid structures. Here, we describe(More)
We report all-atom molecular dynamics and replica exchange molecular dynamics simulations on the unbound human immunodeficiency virus type-1 (HIV-1) transactivation responsive region (TAR) RNA structure and three TAR RNA structures in bound conformations of, in total, approximately 250 ns length. We compare the extent of observed conformational sampling(More)
There is growing interest in molecular recognition processes of RNA because of RNA's widespread involvement in biological processes. Computational approaches are increasingly used for analysing and predicting binding to RNA, fuelled by encouraging progress in developing simulation, free energy and docking methods for nucleic acids. These developments take(More)
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have(More)
Fast and accurate identification of active compounds is essential for effective use of virtual screening workflows. Here, we have compared the ligand-ranking efficiency of the linear interaction energy (LIE) method against standard docking approaches. Using a trypsin set of 1549 compounds, we performed 12,250 molecular dynamics simulations. The LIE method(More)
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular(More)
Protein kinases are involved in a variety of diseases including cancer, inflammation, and autoimmune disorders. Although the development of new kinase inhibitors is a major focus in pharmaceutical research, a large number of kinases remained so far unexplored in drug discovery projects. The selection and assessment of targets is an essential but challenging(More)