Simone Faller

Learn More
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to(More)
BACKGROUND Local pulmonary and systemic infections can lead to acute lung injury (ALI). The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S) appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ(More)
Oxygen therapy is a life-sustaining treatment for patients with respiratory failure. However, prolonged exposure to high oxygen concentrations often results in hyperoxia-induced acute lung injury (HALI). At present, no effective therapeutic intervention can attenuate the development of HALI. In the present study, we investigated whether hydrogen sulfide(More)
BACKGROUND Mechanical ventilation still causes an unacceptably high rate of morbidity and mortality because of ventilator-induced lung injury (VILI). Therefore, new therapeutic strategies are needed to treat VILI. Hydrogen sulfide can induce hypothermia and suspended animation-like states in mice. Hydrogen sulfide can also confer antiinflammatory and(More)
Mechanical ventilation causes ventilator-induced lung injury (VILI), and contributes to acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a disease with high morbidity and mortality among critically ill patients. Carbon monoxide (CO) can confer lung protective effects during mechanical ventilation. This study investigates the time dependency(More)
BACKGROUND Mechanical ventilation leads to ventilator-induced lung injury in animals, and can contribute to acute lung injury/acute respiratory distress syndrome in humans. Acute lung injury/acute respiratory distress syndrome currently causes an unacceptably high rate of morbidity and mortality among critically ill patients. Volatile anesthetics have been(More)
Despite modern clinical practice in critical care medicine, acute lung injury still causes unacceptably high rates of morbidity and mortality. Therefore, the challenge today is to identify new and effective strategies in order to improve the outcome of these patients. Carbon monoxide, endogenously produced by the heme oxygenase enzyme system, has emerged as(More)
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical(More)
BACKGROUND Mechanical ventilation is an important perioperative tool in anesthesia and a lifesaving treatment for respiratory failure, but it can lead to ventilator-associated lung injury. Inhaled anesthetics have demonstrated protective properties in various models of organ damage. We compared the lung-protective potential of inhaled sevoflurane,(More)
The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and(More)