Simone Carradori

Learn More
A series of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives has been synthesized and assayed for their ability to inhibit the activity of the A and B isoforms of human monoamine oxidase (hMAO). Some of these compounds were endowed with a selective inhibitory activity against hMAO-B in the micromolar range. The most active of the(More)
Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly(More)
Monoamine oxidase plays a significant role in the control of intracellular concentration of monoaminergic neurotransmitters or neuromodulators and dietary amines. The rapid degradation of these molecules ensures the proper functioning of synaptic neurotransmission and is critically important for the regulation of emotional and other brain functions. The(More)
A novel series of N,N'-bis[2-oxo-2H-1-benzopyran]-3-carboxamide derivatives have been synthesized and investigated for the ability to inhibit the activity of the A and B isoforms of monoamine oxidase (MAO). Some of the synthesized compounds show good selective inhibitory activity against the MAO-A isoform. Both the MAO-A and -B isoforms, deposited in the(More)
Novel 1-(4-ethyl carboxylate-thiazol-2-yl)-3,5-di(hetero)aryl-2-pyrazoline derivatives were obtained by reacting 3,5-di(hetero)aryl-1-thiocarbamoyl-2-pyrazolines with the ethyl ester of α-bromo-pyruvic acid. The synthesized compounds were confirmed by spectroscopic data and assayed to evaluate their in vitro ability to inhibit both isoforms of human(More)
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer’s and Parkinson’s. Therefore, the search for(More)
Four commercially available immobilized amylose-derived CSPs (Chiralpak IA-3, Chiralpak ID-3, Chiralpak IE-3 and Chiralpak IF-3) were used in the HPLC analysis of the chiral sulfoxides albendazole (ABZ-SO) and fenbendazole (FBZ-SO) and their in vivo sulfide precursor (ABZ and FBZ) and sulfone metabolite (ABZ-SO2 and FBZ-SO2) under organic-aqueous mode.(More)
A structural study of the adduct which 2-benzylsulfinylbenzoic acid forms with human carbonic anhydrase II is reported, showing a binding mode completely different from any other class of carbonic anhydrase inhibitors investigated so far; this carboxylate binds in a pocket situated out of the enzyme active site.
A new series of [4-(3-methoxyphenyl)-thiazol-2-yl]hydrazyne derivatives were synthesized in good yield (71-99%) and characterized by elemental analysis and (1)H NMR studies. The compounds were assayed for their in vitro human monoamine oxidase (hMAO) inhibitory activity and selectivity and most of them showed IC(50) values in the nanomolar range, thus(More)
The transcriptional peroxisome proliferator-activated receptor γ (PPARγ) co-activator PGC-1α plays a central role in the regulation of cellular energy metabolism. Among the wide range of its activities, PGC-1α controls mitochondrial biogenesis and function and is one of the main factors involved in hormonal and nutrient regulation of hepatic(More)