Simone Burgler

Learn More
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T(More)
The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers(More)
BACKGROUND T(H)17 cells are of pathologic relevance in autoimmune disorders and presumably also in allergy and asthma. Regulatory T (Treg) cells, in contrast, suppress inflammatory and allergen-driven responses. Despite these disparate functions, both T-cell subsets have been shown to be dependent on TGF-beta for their development. OBJECTIVE The aim of(More)
Impaired functional activity of T regulatory cells has been reported in allergic patients and results in an increased susceptibility to autoimmune diseases. The master regulator of T regulatory cell differentiation, the transcription factor FOXP3, is required for both their development and function. Despite its key role, relatively little is known about the(More)
  • 1