Learn More
The mechanical integrity of cervical tissue is crucial for maintaining a healthy gestation. Altered tissue biochemistry can cause drastic changes in the mechanical properties of the cervix and contribute to premature cervical dilation and delivery. We present an investigation of the mechanical and biochemical properties of cervical samples from human(More)
The dynamic behavior of porcine brain tissue, obtained from a series of in vitro observations and experiments, is analyzed and described here with the aid of a large strain, nonlinear, viscoelastic constitutive model. Mixed gray and white matter samples excised from the superior cortex were tested in unconfined uniaxial compression within 15h post mortem.(More)
OBJECTIVE The cervix is the lower portion of the uterus. It is composed of fibrous tissue and its mechanical integrity is crucial for maintaining a healthy gestation. During normal pregnancy, the cervical extracellular matrix (ECM) remodels in preparation for labor. The objective of this study was to investigate the biochemical and morphological changes in(More)
This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the(More)
BACKGROUND We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [Hex]) after traumatic brain injury (TBI) decreases(More)
In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the(More)
Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by (1) lack of thorough characterization of the three-dimensional(More)
Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a(More)
The cervix plays a crucial role in maintaining a healthy pregnancy, acting as a mechanical barrier to hold the fetus in utero during gestation. Altered mechanical properties of the cervical tissue are suspected to play a critical role in spontaneous preterm birth. Both MRI and X-ray data in the literature indicate that cervical stroma contains regions of(More)
In normal pregnancy, the cervix maintains its shape during a period of substantial fetal and uterine growth. Hence, maintenance of biomechanical integrity is an important aspect of cervical function. It is known that cervical mechanical properties arise from extracellular matrix (ECM). The most important constituent of the cervical ECM is fibrillar(More)