Learn More
OBJECTIVES Tubules dominate the microstructure of dentin, and in crowns of human teeth they are surrounded by thick mineralized peritubular cuffs of high stiffness. Here we examine the three-dimensional (3D) arrangement of tubules in relation to enamel on the buccal and lingual aspects of intact premolars and molars. Specifically we investigate the angular(More)
PURPOSE This methodical study presents a novel approach to evaluate the validity of two-dimensional histomorphometric measurements of a bone biopsy specimen after sinus floor elevation by means of high contrast, high resolution, three-dimensional and non-destructive synchrotron micro-tomography (SCT). The aim of this methodical description is to demonstrate(More)
Micro-gap formation at the implant-abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for(More)
Nano-crystallite deformation of cellulose microfibrils in the secondary cell wall layer of spruce wood tracheids was observed during de- and rehydration experiments below the fibre saturation point. A quantitative analysis of the (004), (200) and the (110)/(11 0) doublet X-ray diffraction peaks revealed longitudinal contraction, lateral expansion and(More)
Structural investigations of materials in diverse fields such as biomimetics, materials engineering, and medicine have much to benefit from 3D nondestructive microscopy of representative samples of wet tissues. Phase contrast appearing in tomograms produced by Fresnel propagation of partially coherent x-ray fields is useful for visualizing submicrometer(More)
PURPOSE The implant-abutment connection of a two-piece dental implant exhibits complex micromechanical behavior. A microgap is evident at the implant-abutment interface, even in the virgin state, and its width varies when an external mechanical load is applied. MATERIALS AND METHODS This study used high-resolution synchrotron-based radiography in(More)
Over the recent years X-ray differential phase-contrast imaging was developed for the hard X-ray regime as produced from laboratory X-ray sources. The technique uses a grating-based Talbot-Lau interferometer and was shown to yield image contrast gain, which makes it very interesting to the fields of medical imaging and non-destructive testing, respectively.(More)
Recent methods of phase imaging in x-ray tomography allow the visualization of features that are not resolved in conventional absorption microtomography. Of these, the relatively simple setup needed to produce Fresnel-propagated tomograms appears to be well suited to probe tooth-dentin where composition as well as microstructure vary in a graded manner. By(More)
OBJECTIVES Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. METHODS Several implant systems with different conical implant-abutment interfaces were purchased. The implants were(More)
Time-resolved imaging with penetrating radiation has an outstanding scientific value but its realisation requires a high density of photons as well as corresponding fast X-ray image detection schemes. Bending magnets and insertion devices of third generation synchrotron light sources offer a polychromatic photon flux density which is high enough to perform(More)