Simon W. Beaven

Learn More
We have developed an association-based approach using classical inbred strains of mice in which we correct for population structure, which is very extensive in mice, using an efficient mixed-model algorithm. Our approach includes inbred parental strains as well as recombinant inbred strains in order to capture loci with effect sizes typical of complex(More)
The most abundant immune cell type is the neutrophil, a key first responder after pathogen invasion. Neutrophil numbers in the periphery are tightly regulated to prevent opportunistic infections and aberrant inflammation. In healthy individuals, more than 1 × 10⁹ neutrophils per kilogram body weight are released from the bone marrow every 24 hours. To(More)
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the "four core genotypes," to distinguish(More)
Given the success in engineering synthetic phenotypes in microbes and mammalian cells, constructing non-native pathways in mammals has become increasingly attractive for understanding and identifying potential targets for treating metabolic disorders. Here, we introduced the glyoxylate shunt into mouse liver to investigate mammalian fatty acid metabolism.(More)
The liver X receptor alpha (LXRalpha) is a member of the nuclear hormone receptor superfamily that plays an important role in lipid homeostasis. Here we characterize two alternative human LXRalpha transcripts, designated LXRalpha2 and LXRalpha3. All three LXRalpha isoforms are derived from the same gene via alternative splicing and differential promoter(More)
  • 1