Learn More
Forward genetic screens have led to the isolation of several genes involved in secondary cell wall formation. A variety of evidence, however, suggests that the list of genes identified is not exhaustive. To address this problem, microarray data have been generated from tissue undergoing secondary cell wall formation and used to identify genes that exhibit a(More)
All plant tissue is ultimately derived from the meristems, and the molecular mechanisms that control growth of apical meristems have been widely studied (reviewed in). In contrast, much less attention has been paid to vascular meristems, such as the cambium and procambium, even though these meristems are the source of woody tissue and therefore generate the(More)
The cortical microtubule (MT) array and its organization is important in defining the growth axes of plant cells. In roots, the MT array exhibits a net-like configuration in the division zone, and a densely-packed transverse alignment in the elongation zone. This transition is essential for anisotropic cell expansion and consequently has been the subject of(More)
The irregular xylem 1 (irx1) mutant of Arabidopsis has a severe deficiency in the deposition of cellulose in secondary cell walls, which results in collapsed xylem cells. This mutation has been mapped to a 140-kb region of chromosome 4. A cellulose synthase catalytic subunit was found to be located in this region, and genomic clones containing this gene(More)
Previous studies using co-expression analysis have identified a large number of genes likely to be involved in secondary cell-wall formation. However, the function of very few of these genes is known. We have studied the cell-wall phenotype of irx7, irx8 and irx9, three previously described irregular xylem (irx) mutants, and irx14 and parvus-3, which we now(More)
Cellulose synthesis in the developing xylem vessels of Arabidopsis requires three members of the cellulose synthase (CesA) gene family. In young vessels, these three proteins localize within the cell, whereas in older vessels, all three CesA proteins colocalize with bands of cortical microtubules that mark the sites of secondary cell wall deposition. In the(More)
The procambium and cambium are meristematic tissues from which vascular tissue is derived. Vascular initials differentiate into phloem towards the outside of the stem and xylem towards the inside. A small peptide derived from CLV-3/ESR1-LIKE 41 (CLE41) is thought to promote cell divisions in vascular meristems by signalling through the PHLOEM INTERCALLATED(More)
By screening a T-DNA population of Arabidopsis mutants for alterations in inflorescence stem vasculature, we have isolated a mutant with a dramatic increase in vascular tissue development, characterized by a continuous ring of xylem/phloem. This phenotype is the consequence of premature and numerous cambial cell divisions in both the fascicular and(More)
In addition to the influences of family dynamics, educational and vocational factors on the social development and rehabilitation of CLP patients, psychological problems, such as lowered self-esteem and difficulties during social interaction, are also experienced by CLP individuals. As only 20 per cent of cleft teams world-wide carry out a psychological(More)
In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41(More)