Learn More
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except(More)
Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and(More)
In a bioinformatics based screen for chloroplast-localized protein kinases we noticed that available protein targeting predictors falsely predicted chloroplast localization. This seems to be due to interference with N-terminal protein acylation, which is of particular importance for protein kinases. Their N-myristoylation was found to be highly(More)
Exposure of Arabidopsis thaliana plants to high levels of light revealed specific phosphorylation of a 40 kDa protein in photosynthetic thylakoid membranes. The protein was identified by MS as extracellular calcium-sensing receptor (CaS), previously reported to be located in the plasma membrane. By confocal laser scanning microscopy and subcellular(More)
Cell death of xylem elements is manifested by rupture of the tonoplast and subsequent autolysis of the cellular contents. Metacaspases have been implicated in various forms of plant cell death but regulation and execution of xylem cell death by metacaspases remains unknown. Analysis of the type II metacaspase gene family in Arabidopsis thaliana supported(More)
Chloroplasts and mitochondria are central to crucial cellular processes in plants and contribute to a whole range of metabolic pathways. The use of calcium ions as a secondary messenger in and around organelles is increasingly appreciated as an important mediator of plant cell signaling, enabling plants to develop or to acclimatize to changing environmental(More)
In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to(More)
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were(More)
The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the(More)
Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER(More)