Simon Schwizer

Learn More
Long considered intractable organisms by fungal genetic research standards, the oomycetes have recently moved to the centre stage of research on plant-microbe interactions. Recent work on oomycete effector evolution, trafficking and function has led to major conceptual advances in the science of plant pathology. In this review, we provide a historical(More)
The tomato--Pseudomonas syringae pv. tomato (Pst)--pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI). AvrPtoB, however,(More)
Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato(More)
The plant plasma membrane is a key battleground in the war between plants and their pathogens. Plants detect the presence of pathogens at the plasma membrane using sensor proteins, many of which are targeted to this lipophilic locale by way of fatty acid modifications. Pathogens secrete effector proteins into the plant cell to suppress the plant’s defense(More)
  • 1