Learn More
During investigations on the regulation of the Pax-6 gene, we characterized a cDNA from quail neuroretina showing a 5' untranslated region distinct from that previously described and initiated from an internal promoter. Using RNase protection and primer extension mapping, we localized this second quail Pax-6 promoter, termed P1. As reported for the already(More)
The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against(More)
Using nuclear run-on assays, we showed that the tissue-specific expression of quail Pax-6 (Pax-QNR) P0-initiated mRNAs is due in part to regulation of the gene at the transcriptional level. Regulatory sequences governing neuroretina-specific expression of the P0-initiated mRNAs were investigated. By using reporter-based expression assays, we characterized a(More)
In the endocrine pancreas, alpha-cell-specific expression of the glucagon gene is mediated by DNA-binding proteins that interact with the G1 proximal promoter element. Among these proteins, the paired domain transcription factor Pax-6 has been shown to bind to G1 and to transactivate glucagon gene expression. Close to the Pax-6-binding site, we observed the(More)
The Pax-6 gene encodes a transcriptional master regulator involved in the development of the eye. The quail Pax-6 gene is expressed in the neuroretina from two promoters, P0 and P1, P0 being activated at the onset of neuronal differentiation. In this paper we have identified two regions in the quail Pax-6 gene 5' flanking sequences, located 6 and 2.5 kbp(More)
Proper growth and development of multicellular organisms requires precise regulation of developmental genes. One aspect of this regulation is at the level of transcription from the gene promoters. As an initial approach to understanding the regulation of the Pax-6 gene, which plays an important role in eye development and perhaps in other developmental(More)
After differential screening of a cDNA library constructed from quail neuroretina cells (QNR) infected with the v-myc-containing avian retrovirus MC29, we have isolated a cDNA clone, Pax-QNR, homologous to the murine Pax-6, which is mutated in the autosomal dominant mutation small eye of mice and in the disorder aniridia in humans. Here we report the(More)
The retina pigment epithelium (RPE) is fundamental for the development and function of the vertebrate eye. Molecularly, the presumptive RPE can be identified by the early expression of two transcription factors, Mitf and Otx. In mice deficient for either gene, RPE development is impaired with loss of melanogenic gene expression, raising the possibility that(More)
During vertebrate eye development, the optic vesicle originating from the neuroectoderm is partitioned into a domain that will give rise to the neural retina (NR) and another that will give rise to the retinal pigmented epithelium (RPE). Previous studies have shown that ectopic expression of FGFs in the RPE induces RPE-to-NR transdifferentiation. Similarly,(More)
The promoter element G1, critical for alpha-cell-specific expression of the glucagon gene, contains two AT-rich sequences important for transcriptional activity. Pax-6, a paired homeodomain protein previously shown to be required for normal alpha-cell development and to interact with the enhancer element G3 of the glucagon gene, binds as a monomer to the(More)