Learn More
Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination(More)
We previously reported that the USP19 deubiquitinating enzyme positively regulates proliferation in fibroblasts by stabilizing KPC1, a ubiquitin ligase for p27(Kip1). To explore whether this role of USP19 extends to other cellular systems, we tested the effects of silencing of USP19 in several human prostate and breast models, including carcinoma cell(More)
Type 2 diabetes is caused by defects in both insulin signaling and insulin secretion. Though the role of the ubiquitin proteasome system (UPS) in the pathogenesis of type 2 diabetes remains largely unexplored, the few examples present in the literature are interesting and suggest targets for drug development. Studies indicate that insulin resistance can be(More)
Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific(More)
The rapid atrophy of skeletal muscles upon fasting or denervation is due largely to an increased rate of protein breakdown. Blocking the lysosomal or the Ca(2+)-dependent pathways did not prevent increased proteolysis in muscles from fasted animals or following denervation. In contrast, upon food deprivation, the nonlysosomal ATP-dependent process increased(More)
We reported previously that parkin, a Parkinson disease-associated E3 ubiquitin-ligase interacts with ataxin-3, a deubiquitinating enzyme associated with Machado-Joseph disease. Ataxin-3 was found to counteract parkin self-ubiquitination both in vitro and in cells. Moreover, ataxin-3-dependent deubiquitination of parkin required the catalytic cysteine 14 in(More)
Ubiquitin-dependent proteolysis is activated in skeletal muscle atrophying in response to various catabolic stimuli. Previous studies have demonstrated activation of ubiquitin conjugation. Because ubiquitination can also be regulated by deubiquitinating enzymes, we used degenerate oligonucleotides derived from conserved sequences in the ubiquitin-specific(More)
Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome, and cancer. At(More)
Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of(More)
The USP19 deubiquitinating enzyme modulates the expression of myogenin and myofibrillar proteins in L6 muscle cells. This raised the possibility that USP19 might regulate muscle cell differentiation. We therefore tested the effects of adenoviral-mediated overexpression or small interfering RNA (siRNA)-mediated silencing of either the cytoplasmic or(More)