Learn More
We have identified a rat cDNA encoding MRF4, a new member of the muscle regulatory factor gene family that includes MyoD1, myogenin, and Myf-5. MRF4 encodes a predicted 27-kD protein that contains a conserved helix-loop-helix motif, which is a common feature of this gene family. Northern analyses indicate that MRF4 is expressed solely in skeletal muscle(More)
A small genetic region near the telomere of ovine chromosome 18 was previously shown to carry the mutation causing the callipyge muscle hypertrophy phenotype in sheep. Expression of this phenotype is the only known case in mammals of paternal polar overdominance gene action. A region surrounding two positional candidate genes was sequenced in animals of(More)
In this report, we demonstrate that myogenic cultures inhibited from differentiating by treatment with fibroblast growth factor or transforming growth factor beta show reduced levels of MyoD1 mRNA. Although this repression may contribute to the inhibition of myogenesis by growth factors, additional regulatory pathways must be affected, since inhibition(More)
The muscle regulatory factors MRF4, myogenin, myf-5, and MyoD constitute a family of proteins that can function as muscle-specific transcriptional activators. Although this gene family has been extensively studied, a specific role for each factor during myogenesis remains to be determined. Understanding how these factors function requires a detailed(More)
Lhx3 is a LIM homeodomain transcription factor essential for pituitary development and motor neuron specification in mice. We identified two isoforms of human Lhx3, hLhx3a and hLhx3b, which differ in their ability to trans-activate pituitary gene targets. These factors are identical within the LIM domains and the homeodomain, but differ in their(More)
A pituitary LIM homeodomain factor, P-Lim, is expressed as Rathke's pouch forms and as specific pituitary cell phenotypes are established, suggesting functional roles throughout pituitary development. While selectively expressed in both anterior and intermediate pituitary in mature mice, P-Lim is also transiently expressed in the developing ventral neural(More)
The mammalian anterior pituitary gland is a compound endocrine organ that regulates reproductive development and fitness, growth, metabolic homeostasis, the response to stress, and lactation, by actions on target organs such as the gonads, the liver, the thyroid, the adrenals, and the mammary gland. The protein and peptide hormones that control these(More)
Pit-1 is a tissue-specific POU domain factor obligatory for the appearance of three cell phenotypes in the anterior pituitary gland. Expression of the pit-1 gene requires the actions of a cell-specific 390-bp enhancer, located 10 kb 5' of the pit-1 transcription initiation site, within sequence that proves essential for effective pituitary targeting of(More)
CONTEXT The Lhx3 LIM-homeodomain transcription factor gene is required for development of the pituitary and motoneurons in mice. Human LHX3 gene mutations have been reported in five subjects with a phenotype consisting of GH, prolactin, TSH, LH, and FSH deficiency; abnormal pituitary morphology; and limited neck rotation. OBJECTIVE The objective of the(More)
The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Mutations in the genes encoding these regulatory proteins are associated with combined hormone deficiency diseases in humans and animal models. Patients with these diseases have complex syndromes involving short stature, and(More)