Learn More
The gamma-aminobutyric acid (GABA(B)) receptor has been shown to be a heterodimer consisting of two receptor subunits, GABA(B1) and GABA(B2). We have stably co-expressed these two subunits in a CHO cell line, characterised its pharmacology and compared it to the native receptor in rat brain membranes. Radioligand binding using [3H]CGP54626A demonstrated a(More)
GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the(More)
P2X4 receptors are expressed in specific brain areas. We now describe site-specific splice variations of the human P2X4 receptor subunit, occurring at residue [YVIG / WVFV(W)] near the end of the first predicted transmembrane domain. p2X4(b) is formed by the insertion of an additional 16 amino acids. p2X4(C) is formed by deleting a cassette of 130 amino(More)
1. The aim of this study was to characterize the pharmacological profile of the GABA(B1)/GABA(B2) heterodimeric receptor expressed in Chinese hamster ovary (CHO) cells. We have compared receptor binding affinity and functional activity for a series of agonists and antagonists. 2. The chimeric G-protein, G(qi5), was used to couple receptor activation to(More)
Peptides derived from pro-opiomelanocortin, including alpha-MSH and ACTH, play important roles in the regulation of feeding. We investigated the central effect of ACTH 1-39 (ACTH) and peptides derived from the N-terminus (ACTH 1-10, Acetyl-ACTH 1-13-amide [alpha-MSH]) and C-terminus (ACTH 18-39 and ACTH 22-39) of this peptide on feeding in 16 hour-fasted or(More)
  • 1