Simon Philipp Hoerstrup

Learn More
BACKGROUND Previous tissue engineering approaches to create heart valves have been limited by the structural immaturity and mechanical properties of the valve constructs. This study used an in vitro pulse duplicator system to provide a biomimetic environment during tissue formation to yield more mature implantable heart valves derived from autologous(More)
One approach to the tissue engineering of vascular structures is to develop in vitro conditions in order ultimately to fabricate functional vascular tissues before final implantation. In our experiment, we aimed to develop a new combined cell seeding and perfusion system that provides sterile conditions during cell seeding and biomechanical stimuli in order(More)
Heart valve replacement represents the most common surgical therapy for end-stage valvular heart diseases. A major drawback that all contemporary heart valve replacements have in common is the lack of growth, repair and remodelling capability. In order to overcome these limitations, the emerging new field of tissue engineering is focusing on the in vitro(More)
BACKGROUND A novel concept providing prenatally tissue engineered human autologous heart valves based on routinely obtained fetal amniotic fluid progenitors as single cell source is introduced. METHODS AND RESULTS Fetal human amniotic progenitors were isolated from routinely sampled amniotic fluid and sorted using CD133 magnetic beads. After expansion and(More)
BACKGROUND End-stage renal disease is known to be an important risk factor complex for cardiac operations performed with cardiopulmonary bypass. METHODS To investigate the influence of preoperative status on perioperative mortality and morbidity, we retrospectively analyzed data from 65 patients (20 women and 45 men with a mean age of 58.8+/-10.0 years(More)
A crucial factor in tissue engineering of heart valves is the type of scaffold material. In the following study, we tested three different biodegradable scaffold materials, polyglycolic acid (PGA), polyhydroxyalkanoate (PHA), and poly-4-hydroxybutyrate (P4HB), as scaffolds for tissue engineering of heart valves. We modified PHA and P4HB by a salt leaching(More)
BACKGROUND Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. METHODS Tissue-engineered living blood vessels were generated(More)
The vascular and the nervous system are responsible for oxygen, nutrient, and information transfer and thereby constitute highly important communication systems in higher organisms. These functional similarities are reflected at the anatomical, cellular, and molecular levels, where common developmental principles and mutual crosstalks have evolved to(More)
OBJECTIVE The field of tissue engineering deals with the creation of tissue structures based on patient cells. The scaffold plays a central role in the creation of 3-D structures in cardiovascular tissue engineering like small vessels or heart valve prosthesis. An ideal scaffold should have tissue-like mechanical properties and a complete immunologic(More)
BACKGROUND Tissue engineering is a new approach in which techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional autologous tissue. Workers at our laboratory have focused on tissue engineering of heart valves. The present study was designed to evaluate the implantation of a whole(More)