Learn More
Given a primal-dual pair of linear programs, it is well known that if their optimal values are viewed as lying on the extended real line, then the duality gap is zero, unless both problems are infeasible, in which case the optimal values are +∞ and −∞. In contrast, for optimization problems over nonpolyhedral convex cones, a nonzero duality gap can exist(More)
We consider a primal-dual short-step interior-point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the primal and dual barrier functions is either impossible or prohibitively expensive. As our main contribution, we show that if approximate gradients and Hessians of the primal barrier function can be(More)
  • 1