Simon P. Newman

Learn More
Steroid sulfatase (STS) is responsible for the hydrolysis of aryl and alkyl steroid sulfates and therefore has a pivotal role in regulating the formation of biologically active steroids. The enzyme is widely distributed throughout the body, and its action is implicated in physiological processes and pathological conditions. The crystal structure of the(More)
2-Methoxyoestradiol (2-MeOE2) is an endogenous oestrogen metabolite that inhibits the proliferation of cancer cells in vitro, and it is also antiangiogenic. In vivo 2-MeOE2, when administered at relatively high doses, inhibits the growth of tumours derived from breast cancer cells, sarcomas and melanomas. Sulphamoylated derivatives of 2-MeOE2 are more(More)
Sulfamoylation of 2-methoxyestrone (2-MeOE1) was shown previously to enhance its potency as an anti-proliferative agent against breast cancer cells. We have examined the ability of a series of 2-methoxyestradiol (2-MeOE2) and 2-ethylestradiol (2-EtE2) sulfamates to inhibit angiogenesis in vitro. 2-MeOE2 bis-sulfamate and 2-EtE2 sulfamate were potent(More)
In contrast to aromatase inhibitors, which are now in clinical use, the development of steroid sulphatase (STS) inhibitors for breast cancer therapy is still at an early stage. STS regulates the formation of oestrone from oestrone sulphate (E1S) but also controls the hydrolysis of dehydroepiandrosterone sulphate (DHEA-S). DHEA can be reduced to(More)
Steroid sulphatase (STS) catalyzes the conversion of oestrone sulphate (E1S) to oestrone (E1) and its action in breast tumours makes a major contribution to in situ oestrogen production in this tissue. Although expression of STS mRNA and STS activity are increased in malignant breast tissues compared with that in non-malignant tissues, little is known about(More)
The goal of this research was to use the long-term fishery data set and DNA from archived scales of walleye Sander vitreus in Escanaba Lake, WI, U.S.A., to improve the understanding of the underlying mechanism(s) influencing genetic diversity in naturally recruiting populations. The introduced population of S. vitreus in Escanaba Lake has a low mean(More)
Cytokines, such as IL-6 and tumor necrosis factor (TNF)-α, have an important role in regulating estrogen synthesis in peripheral tissues, including normal and malignant breast tissues. The activities of the aromatase, estradiol 17β-hydroxysteroid dehydrogenase and estrone sulfatase are all increased by IL-6 and TNF-α. Prostaglandin E2 may also be an(More)
The human endogenous metabolite 2-methoxyoestradiol (2-MeOE2) has been shown to inhibit the proliferation of breast cancer cells. We have previously shown that sulphamoylation of a series of 2-substituted oestrogens greatly enhances their ability to inhibit breast cancer cell proliferation and induce apoptosis. In this study, we have investigated the(More)
Breast cancer is the leading cause of cancer deaths among women worldwide. The theory of targeting both cancer cells directly and their blood supply has significant therapeutic potential. However, to date, there are few clinically successful single agents that meet these criteria. 2-Methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE) and(More)
PURPOSE The aim of these studies was to characterize the action of STX140 in a P-glycoprotein-overexpressing tumor cell line both in vitro and in vivo. In addition, its efficacy was determined against xenografts derived from patients who failed docetaxel therapy. EXPERIMENTAL DESIGN The effects of STX140, Taxol, and 2-methoxyestradiol (2-MeOE2) on cell(More)