Learn More
Dark, nonradiating plasmonic modes are important in the Raman enhancement efficiency of nanostructures. However, it is challenging to engineer such hotspots with predictable enhancement efficiency through synthesis routes. Here, we demonstrate that spiky nanoshells have designable quadrupole resonances that efficiently enhance Raman scattering with(More)
We report a synthetic approach to produce raspberry-like plasmonic nanostructures with unusually strong magnetic resonances, termed raspberry-like metamolecules (raspberry-MMs). The synthesis based on the surfactant-assisted templated seed-growth method allows for the simultaneous one-step synthesis and assembly of well-insulated gold nanoparticles. The(More)
We present NMR signals from a strongly coupled homonuclear spin system, (1)H nuclei in adamantane, acquired with simultaneous two-photon excitation under conditions of the Lee-Goldburg experiment. Small coils, having inside diameters of 0.36 mm, are used to achieve two-photon nutation frequencies of approximately 20 kHz. The very large rf field strengths(More)
Near-field enhancement of the electric field by metallic nanostructures is important in non-linear optical applications such as surface enhanced Raman scattering. One approach to producing strong localization of the electric field is to couple a dark, non-radiating plasmonic mode with a broad dipolar resonator that is detectable in the far-field. However,(More)
  • 1