Learn More
We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected(More)
We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized framework that encompasses a broad family of approaches and includes cross-dimensional pooling and weighting steps. We then propose specific(More)
We describe an efficient learning procedure for multilayer generative models that combine the best aspects of Markov random fields and deep, directed belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approximation to the posterior distribution in(More)
We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of each unit(More)
We present a new way of extending independent components analysis (ICA) to overcomplete representations. In contrast to the causal generative extensions of ICA which maintain marginal independence of sources, we define features as deterministic (linear) functions of the inputs. This assumption results in marginal dependencies among the features, but(More)
We propose a model for natural images in which the probability of an image is proportional to the product of the probabilities of some filter outputs. We encourage the system to find sparse features by using a Student-t distribution to model each filter output. If the t-distribution is used to model the combined outputs of sets of neurally adjacent filters,(More)
We present an energy-based model that uses a product of generalized Student-t distributions to capture the statistical structure in data sets. This model is inspired by and particularly applicable to "natural" data sets such as images. We begin by providing the mathematical framework, where we discuss complete and overcomplete models and provide algorithms(More)
Training directed neural networks typically requires forward-propagating data through a computation graph, followed by backpropagating error signal, to produce weight updates. All layers, or more generally, modules, of the network are therefore locked, in the sense that they must wait for the remainder of the network to execute forwards and propagate error(More)