Learn More
It is widely held that tau determines the stability of microtubules in growing axons, although direct evidence supporting this hypothesis is lacking. Previous studies have shown that the microtubule polymer in the distal axon and growth cone is the most dynamic of growing axons; it turns over more rapidly and is more sensitive to microtubule depolymerizing(More)
Phagocytosis and autophagy are two ancient, highly conserved processes involved, respectively, in the removal of extracellular organisms and the destruction of organisms in the cytosol. Autophagy, for either metabolic regulation or defence, involves the formation of a double membrane called the autophagosome, which then fuses with lysosomes to degrade the(More)
Alzheimer's disease (AD) belongs to a category of adult neurodegenerative conditions, which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative(More)
Movements of medium and large sized membranous organelles (0.5-1 microns in diameter) were visualized within segments of the crab walking leg nerve with Nomarski differential interference contrast optics and subjected to video contrast enhancement. Accessibility to the axoplasm was demonstrated by intra-axonal fluorescence following addition of rhodamine(More)
Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a(More)
Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated(More)
To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated(More)
Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic(More)
Myeloid leukemia factor 1 (MLF1) was involved in t(3;5) chromosomal rearrangement and aberrantly expressed in myelodysplastic syndromes/acute myeloid leukemia patients. Ex vivo experiments showed that the lymphocytes from the Mlf1-deficient mice were more resistant to apoptotic stimulations than the wild-type cells. Furthermore, the ectopically expressed(More)
  • 1