Simon Litvak

Learn More
Cytoplasmic male sterility in plants is associated with mitochondrial dysfunction. We have proposed that a nuclear-encoded chimeric peptide formed by mitochondrial sequences when imported into the mitochondria may impair organelle function and induce male sterility in plants. A model developed to test this hypothesis is reported here. Assuming that the(More)
Seventeen aqueous and methanol extracts from nine South African medicinal plants, ethnobotanically selected, were screened for inhibitory properties against HIV-1 reverse transcriptase (RT). Isolated compounds were additionally evaluated on HIV-1 integrase (IN). The strongest inhibition against the RNA-dependent-DNA polymerase (RDDP) activity of RT was(More)
RNA editing of subunit 9 of the wheat mitochondrial ATP synthase has been studied by cDNA and protein sequence analysis. Most of the cDNA clones sequenced (95%) showed that editing by C-to-U transitions occurred at eight positions in the coding region. Consequently, 5 amino acids were changed in the protein when compared with the sequence predicted from the(More)
Creutzfeldt-Jakob disease (CJD) belongs to a group of prion diseases that may be infectious, sporadic, or hereditary. The 200K point mutation in the PRNP gene is the most frequent cause of hereditary CJD, accounting for >70% of families with CJD worldwide. Prevalence of the 200K variant of familial CJD is especially high in Slovakia, Chile, and Italy, and(More)
Specific interactions between retroviral integrase (IN) and long terminal repeats are required for insertion of viral DNA into the host genome. To characterize quantitatively the determinants of substrate specificity, we used a method based on a stepwise increase in ligand complexity. This allowed an estimation of the relative contributions of each(More)
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has(More)
Stable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN. Our(More)
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole(More)
Three DNA polymerases (A, B and C) have been purified from the soluble cytoplasm of ungerminated embryos. Mainly on the basis of chromatographic, template-specificity and salt-inhibition evidence, we have characterized the three enzymes. Other physico-chemical and enzymic properties are described. From purified mitochondria we have purified a DNA polymerase(More)
The integrase of the human immunodeficiency virus type 1 (HIV-1) has been expressed in yeast in order to investigate its potential lethal effect mediated by DNA damage. To this end, we have constructed an expression plasmid containing the retroviral integrase gene under the control of the inducible promotor ADH2/GAPDH which is regulated by the glucose(More)