Learn More
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned(More)
Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference(More)
The GLIMMER system for microbial gene identification finds approximately 97-98% of all genes in a genome when compared with published annotation. This paper reports on two new results: (i) significant technical improvements to GLIMMER that improve its accuracy still further, and (ii) a comprehensive evaluation that demonstrates that the accuracy of the(More)
This article describes a new system for induction of oblique decision trees. This system, OC1, combines deterministic hill-climbing with two forms of randomization to nd a good oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision tree methods are tuned especially for domains in which the attributes are numeric,(More)
A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human(More)
This paper describes a new system, GLIMMER, for finding genes in microbial genomes. In a series of tests on Haemophilus influenzae , Helicobacter pylori and other complete microbial genomes, this system has proven to be very accurate at locating virtually all the genes in these sequences, outperforming previous methods. A conservative estimate based on(More)
In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of(More)
We propose a representation for gene expression data called conserved gene expression motifs or XMOTIFs. A gene's expression level is conserved across a set of samples if the gene is expressed with the same abundance in all the samples. A conserved gene expression motif is a subset of genes that is simultaneously conserved across a subset of samples. We(More)
The advent of high-throughput biology has catalyzed a remarkable improvement in our ability to identify new genes. A large fraction of newly discovered genes have an unknown functional role, particularly when they are specific to a particular lineage or organism. These genes, currently labeled "hypothetical," might support important biological cell(More)
MOTIVATION The development of experimental methods for genome scale analysis of molecular interaction networks has made possible new approaches to inferring protein function. This paper describes a method of assigning functions based on a probabilistic analysis of graph neighborhoods in a protein-protein interaction network. The method exploits the fact(More)