Simon J. Moore

Learn More
Bacillus megaterium is a bacterium that has been used in the past for the industrial production of vitamin B12 (cobalamin), the anti-pernicious anaemia factor. Cobalamin is a modified tetrapyrrole with a cobalt ion coordinated within its macrocycle. More recently, B. megaterium has been developed as a host for the high-yield production of recombinant(More)
It has been known for the past 20 years that two pathways exist in nature for the de novo biosynthesis of the coenzyme form of vitamin B12, adenosylcobalamin, representing aerobic and anaerobic routes. In contrast to the aerobic pathway, the anaerobic route has remained enigmatic because many of its intermediates have proven technically challenging to(More)
Vitamin B12 (cobalamin) is a cobalt-containing modified tetrapyrrole that is an essential nutrient for higher animals. Its biosynthesis is restricted to certain bacteria and requires approximately 30 enzymatic steps for its complete de novo construction. Remarkably, two distinct biosynthetic pathways exist, which are termed the aerobic and anaerobic routes.(More)
In contrast to the versatility of regulatory mechanisms in natural systems, synthetic genetic circuits have been so far predominantly composed of transcriptionally regulated modules. This is about to change as the repertoire of foundational tools for post-transcriptional regulation is quickly expanding. We provide an overview of the different types of(More)
INTRODUCTION Rosacea (including facial erythema) has a negative impact on psychological and emotional health. This survey aimed to assess the impact of facial erythema on subconscious perceptions and the initial reactions of others and how this affects attitudes in different settings. The survey also measured the impact of facial erythema on a person's(More)
Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has(More)
The anaerobic pathway for the biosynthesis of cobalamin (vitamin B(12)) has remained poorly characterized because of the sensitivity of the pathway intermediates to oxygen and the low activity of enzymes. One of the major bottlenecks in the anaerobic pathway is the ring contraction step, which has not been observed previously with a purified enzyme system.(More)
Automation and factorial experimental design together with cell-free in vitro transcription-translation systems offers a new route to the precise characterization of regulatory components. This now presents a new opportunity to illuminate the genetic circuitry from arcane microbial chassis, which are difficult to assess in vivo. One such host, Bacillus(More)
Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilization of methane through anaerobic methane oxidation. The enzyme uses an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a methyl radical/Ni(ii)-thiolate intermediate.(More)
Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up(More)
  • 1