Simon J Haward

Learn More
The crucifer Arabidopsis thaliana has been used widely as a model organism for the study of plant development. We describe here the development of an efficient insertional mutagenesis system in Arabidopsis that permits identification of genes by their patterns of expression during development. Transposable elements of the Ac/Ds system carrying the GUS(More)
We have developed an oscillatory cross-slot extensional rheometer capable of performing measurements with unprecedentedly small volumes of test fluids (∼10–100 μL). This provides the possibility of studying exotic and precious or scarce bio-fluids, such as synovial fluid. To test our system, we have looked at a relatively abundant and accessible biological(More)
We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar(More)
A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point(More)
We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device.(More)
Hyaluronic acid (HA) is an important biomacromolecule, which fulfils a number of vital physiological functions (especially in the joint synovial fluid) and also has consumer and pharmaceutical applications. HA solution properties have already been quite thoroughly characterized in response to steady shear flows but are less well understood in highly(More)
Wormlike micellar surfactant solutions are encountered in a wide variety of important applications, including enhanced oil recovery and ink-jet printing, in which the fluids are subjected to high extensional strain rates. In this contribution we present an experimental investigation of the flow of a model wormlike micellar solution (cetyl pyridinium(More)
In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions exhibit shear thinning, and the high-frequency complex modulus measured in small amplitude oscillatory shear flow exhibits the(More)
Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena,(More)
Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid).(More)