Simon Hoerder

Learn More
Research within “post-quantum” cryptography has focused on development of schemes that resist quantum cryptanalysis. However, if such schemes are to be deployed, practical questions of efficiency and physical security should also be addressed; this is particularly important for embedded systems. To this end, we investigate issues relating to side-channel(More)
Instruction set extensions (ISEs) supplement a host processor with special-purpose, typically fixed-function hardware components and instructions to utilise them. For cryptographic use-cases, this can be very effective due to the demand for non-standard or niche operations that are not supported by general-purpose architectures. However, one disadvantage of(More)
Cryptographic hash functions are an omnipresent component in security-critical software and devices; they support digital signature and data authenticity schemes, mechanisms for key derivation, pseudo-random number generation and so on. A criterion for candidate hash functions in the SHA-3 contest is resistance against side-channel analysis which is a major(More)
In [12], the authors present a new light-weight cryptographic primitive which supports an associated RFID-based authentication protocol. The primitive has some structural similarities to AES, but is presented as a keyed one-way function using a 128-bit key. Although a security analysis is included, this is at a high-level only. To provide a more concrete(More)
Within a broader context of mobile and embedded computing, the design of practical, secure tokens that can store and/or process security-critical information remains an ongoing challenge. One aspect of this challenge is the threat of information leakage through side-channel attacks, which is exacerbated by any resource constraints. Although any(More)
  • 1