Learn More
The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are 2 Authors Suppressed Due to Excessive Length presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For(More)
The motion field of a scene can be used for object seg-mentation and to provide features for classification tasks like action recognition. Scene flow is the full 3D motion field of the scene, and is more difficult to estimate than it's 2D counterpart, optical flow. Current approaches use a smoothness cost for regularisation, which tends to over-smooth at(More)
In this paper, an algorithm is presented for estimating scene flow, which is a richer, 3D analog of optical flow. The approach operates orders of magnitude faster than alternative techniques and is well suited to further performance gains through parallelized implementation. The algorithm employs multiple hypotheses to deal with motion ambiguities, rather(More)
We investigate the recognition of actions " in the wild " using 3D motion information. The lack of control over (and knowledge of) the camera configuration, exacerbates this already challenging task, by introducing systematic projective inconsistencies between 3D motion fields, hugely increasing intra-class variance. By introducing a robust, sequence based,(More)
Long term tracking of an object, given only a single instance in an initial frame, remains an open problem. We propose a visual tracking algorithm, robust to many of the difficulties which often occur in real-world scenes. Correspondences of edge-based features are used, to overcome the reliance on the texture of the tracked object and improve invariance to(More)
Tracking hands and estimating their trajectories is useful in a number of tasks, including sign language recognition and human computer interaction. Hands are extremely difficult objects to track, their deformability, frequent self occlusions and motion blur cause appearance variations too great for most standard object trackers to deal with robustly. In(More)
In this paper, we address the problem of tracking an unknown object in 3D space. Online 2D tracking often fails for strong out-of-plane rotation which results in considerable changes in appearance beyond those that can be represented by online update strategies. However , by modelling and learning the 3D structure of the object explicitly, such effects are(More)