Learn More
The problem of noise reduction has attracted a considerable amount of research attention over the past several decades. Among the numerous techniques that were developed, the optimal Wiener filter can be considered as one of the most fundamental noise reduction approaches, which has been delineated in different forms and adopted in various applications.(More)
In this paper, a generalized singular value decomposition (GSVD) based algorithm is proposed for enhancing multimicrophone speech signals degraded by additive colored noise. This GSVD-based multimicrophone algorithm can be considered to be an extension of the single-microphone signal subspace algorithms for enhancing noisy speech signals and amounts to a(More)
Recently, a generalized multi-microphone noise reduction scheme, referred to as the spatially pre-processed speech distortion weighted multichannel Wiener filter (SP-SDW-MWF), has been presented. This scheme consists of a fixed spatial preprocessor and a multichannel adaptive noise canceler (ANC) optimizing the SDWMWF cost function. By taking speech(More)
Fixed broadband beamformers using small-size microphone arrays are known to be highly sensitive to errors in the microphone array characteristics. This paper describes two design procedures for designing broadband beamformers with an arbitrary spatial directivity pattern, which are robust against gain and phase errors in the microphone array(More)
Fixed superdirective beamformers using small-sized microphone arrays are known to be highly sensitive to errors in the assumed microphone array characteristics (gain, phase, position). This paper discusses the design of robust superdirective beamformers by taking into account the statistics of the microphone characteristics. Different design procedures are(More)
In a binaural hearing aid system, output signals need to be generated for the left and the right ear. Using the binaural multichannel Wiener filter (MWF), which exploits all microphone signals from both hearing aids, a significant reduction of background noise can be achieved. However, due to power and bandwidth limitations of the binaural link, it is(More)
Binaural hearing aids use microphone signals from both left and right hearing aid to generate an output signal for each ear. The microphone signals can be processed by a procedure based on speech distortion weighted multichannel Wiener filtering (SDW-MWF) to achieve significant noise reduction in a speech + noise scenario. In binaural procedures, it is also(More)
This paper evaluates speech enhancement in binaural multimicrophone hearing aids by noise reduction algorithms based on the multichannel Wiener filter (MWF) and the MWF with partial noise estimate (MWF-N). Both algorithms are specifically developed to combine noise reduction with the preservation of binaural cues. Objective and perceptual evaluations were(More)
Acoustic multichannel equalization techniques such as the multiple-input/output inverse theorem (MINT), which aim to equalize the room impulse responses (RIRs) between the source and the microphone array, are known to be highly sensitive to RIR estimation errors. To increase robustness, it has been proposed to incorporate regularization in order to decrease(More)
In this paper a frequency-domain technique is described for estimating the acoustic transfer functions, when reverberated speech signals are corrupted by spatially coloured noise. This technique is an extension of the frequencydomain procedure of [1], which is only optimal in the case of spatially white noise. Using the estimated acoustic transfer(More)