Simon D. W. Frost

Learn More
UNLABELLED The HyPhypackage is designed to provide a flexible and unified platform for carrying out likelihood-based analyses on multiple alignments of molecular sequence data, with the emphasis on studies of rates and patterns of sequence evolution. AVAILABILITY http://www.hyphy.org CONTACT muse@stat.ncsu.edu SUPPLEMENTARY INFORMATION(More)
We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral(More)
UNLABELLED Datamonkey is a web interface to a suite of cutting edge maximum likelihood-based tools for identification of sites subject to positive or negative selection. The methods range from very fast data exploration to the some of the most complex models available in public domain software, and are implemented to run in parallel on a cluster of(More)
Datamonkey is a popular web-based suite of phylogenetic analysis tools for use in evolutionary biology. Since the original release in 2005, we have expanded the analysis options to include recently developed algorithmic methods for recombination detection, evolutionary fingerprinting of genes, codon model selection, co-evolution between sites,(More)
MOTIVATION Phylogenetic and evolutionary inference can be severely misled if recombination is not accounted for, hence screening for it should be an essential component of nearly every comparative study. The evolution of recombinant sequences can not be properly explained by a single phylogenetic tree, but several phylogenies may be used to correctly model(More)
Adaptive evolution frequently occurs in episodic bursts, localized to a few sites in a gene, and to a small number of lineages in a phylogenetic tree. A popular class of "branch-site" evolutionary models provides a statistical framework to search for evidence of such episodic selection. For computational tractability, current branch-site models(More)
Several codon-based methods are available for detecting adaptive evolution in protein-coding sequences, but to date none specifically identify sites that are selected differentially in two populations, although such comparisons between populations have been historically useful in identifying the action of natural selection. We have developed two fixed(More)
The evolution of homologous sequences affected by recombination or gene conversion cannot be adequately explained by a single phylogenetic tree. Many tree-based methods for sequence analysis, for example, those used for detecting sites evolving nonneutrally, have been shown to fail if such phylogenetic incongruity is ignored. However, it may be possible to(More)
The ratio of nonsynonymous (dN) to synonymous (dS) substitution rates, omega, provides a measure of selection at the protein level. Models have been developed that allow omega to vary among lineages. However, these models require the lineages in which differential selection has acted to be specified a priori. We propose a genetic algorithm approach to(More)
HIV type 1 (HIV-1) can rapidly escape from neutralizing antibody responses. The genetic basis of this escape in vivo is poorly understood. We compared the pattern of evolution of the HIV-1 env gene between individuals with recent HIV infection whose virus exhibited either a low or a high rate of escape from neutralizing antibody responses. We demonstrate(More)