Simon D. Streeter

Learn More
Restriction-modification (R-M) systems serve to protect the host bacterium from invading bacteriophage. The multi-component system includes a methyltransferase, which recognizes and methylates a specific DNA sequence, and an endonuclease which recognises the same sequence and cleaves within or close to this site. The endonuclease will only cleave DNA that(More)
Controller (C) proteins regulate the timing of the expression of restriction and modification (R-M) genes through a combination of positive and negative feedback circuits. A single dimer bound to the operator switches on transcription of the C-gene and the endonuclease gene; at higher concentrations, a second dimer bound adjacently switches off these genes.(More)
The convergently transcribed restriction (R) and methylase (M) genes of the Restriction-Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I in vivo and in vitro. C-protein binding at(More)
Controller proteins such as C.AhdI regulate the expression of bacterial restriction-modification genes, and ensure that methylation of the host DNA precedes restriction by delaying transcription of the endonuclease. The operator DNA sequence to which C.AhdI binds consists of two adjacent binding sites, O(L) and O(R). Binding of C.AhdI to O(L) and to O(L) +(More)
The controller protein C.Esp1396I regulates the timing of gene expression of the restriction-modification (RM) genes of the RM system Esp1396I. The molecular recognition of promoter sequences by such transcriptional regulators is poorly understood, in part because the DNA sequence motifs do not conform to a well-defined symmetry. We report here the crystal(More)
Controller (C) proteins regulate the expression of restriction-modification (RM) genes in a wide variety of RM systems. However, the RM system Esp1396I is of particular interest as the C protein regulates both the restriction endonuclease (R) gene and the methyltransferase (M) gene. The mechanism of this finely tuned genetic switch depends on differential(More)
In a wide variety of bacterial restriction-modification systems, a regulatory `controller' protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have(More)
The controller protein of the type II restriction-modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator(More)
Restriction-modification controller proteins play an essential role in regulating the temporal expression of restriction-modification genes. The controller protein C.Csp231I represents a new class of controller proteins. The gene was sublconed to allow overexpression in Escherichia coli. The protein was purified to homogeneity and crystallized using the(More)
  • 1