Simon Catterall

Learn More
We discuss the connection between supersymmetric field theories and topological field theories and show how this connection may be used to construct local lattice field theories which maintain an exact supersymmetry. It is shown how metric independence of the continuum topological field theory allows us to derive the lattice theory by blocking out of the(More)
Starting from a simple discrete model which exhibits a supersymmetric invariance we construct a local, interacting, two-dimensional Euclidean lattice theory which also admits an exact supersymmetry. This model is shown to correspond to the Wess-Zumino model with extended N = 2 supersymmetry in the continuum. We have performed dynamical fermion simulations(More)
We construct a lattice action for N = 4 super Yang-Mills theory in four dimensions which is local, gauge invariant, free of spectrum doubling and possesses a single exact supersymmetry. Our construction starts from the observation that the fermions of the continuum theory can be mapped into the component fields of a single real anticommuting Kähler-Dirac(More)
We show that the phase transition previously observed in dynamical triangulation models of quantum gravity can be understood as being due to the creation of a singular link. The transition between singular and non-singular geometries as the gravitational coupling is varied appears to be first order. Dynamical triangulations (DT) furnish a powerful approach(More)
By a sequence of numerical experiments we demonstrate that generic triangulations of the D−sphere forD > 3 contain one singular (D−3)−simplex. The mean number of elementary D−simplices sharing this simplex increases with the volume of the triangulation according to a simple power law. The lower dimension subsimplices associated with this (D − 3)−simplex(More)