Learn More
An all-optical transistor is a device in which a gate light pulse switches the transmission of a target light pulse with a gain above unity. The gain quantifies the change of the transmitted target photon number per incoming gate photon. We study the quantum limit of one incoming gate photon and observe a gain of 20. The gate pulse is stored as a Rydberg(More)
All-optical switching is a technique in which a gate light pulse changes the transmission of a target light pulse without the detour via electronic signal processing. We take this to the quantum regime, where the incoming gate light pulse contains only one photon on average. The gate pulse is stored as a Rydberg excitation in an ultracold atomic gas using(More)
This study compares sentence understanding in quiet and in noise with 3 different speech coding strategies for cochlear implants. The results show that the spectral-peak (SPEAK) and continuous-interleaved-sampling (CIS) coding strategies, based on spectral signal analysis, allow for better speech understanding in quiet as well as in noise, than the(More)
Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon(More)
A classical logic gate connecting input and output light pulses is demonstrated. The gate operation is based on three steps: First, two incoming light pulses are stored in a Bose-Einstein condensate; second, atomic four-wave mixing generates a new matter wave; and third, the light pulses are retrieved. In the presence of the new matter wave, the retrieval(More)
  • 1