Learn More
Natural sounds are characterized by their spectral content and the modulation of energy over time. Using functional magnetic resonance imaging in awake macaques, we observed topographical representations of these spectral and temporal dimensions in a single structure, the inferior colliculus, the principal auditory nucleus in the midbrain. These(More)
In non-human primates a scheme for the organization of the auditory cortex is frequently used to localize auditory processes. The scheme allows a common basis for comparison of functional organization across non-human primate species. However, although a body of functional and structural data in non-human primates supports an accepted scheme of nearly a(More)
Playing a musical instrument requires efficient auditory and motor processing. Fast feed forward and feedback connections that link the acoustic target to the corresponding motor programs need to be established during years of practice. The aim of our study is to provide a detailed description of cortical structures that participate in this audio-motor(More)
PURPOSE In this EEG study we sought to examine the neuronal underpinnings of short-term plasticity as a top-down guided auditory learning process. We hypothesized, that (i) auditory imagery should elicit proper auditory evoked effects (N1/P2 complex) and a late positive component (LPC). Generally, based on recent human brain mapping studies we expected (ii)(More)
Instrumental tones and, in some instances, simple sine-wave tones were shown to evoke stronger auditory-evoked responses in musicians compared to nonmusicians. This effect was taken as an example for plasticity in the auditory cortex elicited by training. To date, however, it is unknown whether an enlarged cortical representation for (instrumental) tones or(More)
Non-human-primate fMRI is becoming increasingly recognised as the missing link between the widely applied methods of human imaging and intracortical animal electrophysiology. A crucial requirement for the optimal application of this method is the precise knowledge of the time course of the Blood Oxygenation Level Dependent (BOLD) signal. We mapped the BOLD(More)
Timbre is a major attribute of sound perception and a key feature for the identification of sound quality. Here, we present event-related brain potentials (ERPs) obtained from sixteen healthy individuals while they discriminated complex instrumental tones (piano, trumpet, and violin) or simple sine wave tones that lack the principal features of timbre. Data(More)
Playing a musical instrument requires efficient auditory as well as motor processing. We provide evidence for the existence of a neuronal network of secondary and higher-order areas belonging to the auditory and motor modality that is important in the integration of auditory and motor domains.
Laughter is an affective nonspeech vocalization that is not reserved to humans, but can also be observed in other mammalians, in particular monkeys and great apes. This observation makes laughter an interesting subject for brain research as it allows us to learn more about parallels and differences of human and animal communication by studying the neural(More)
In the functional imaging of auditory cortical functions, long silent periods between the data acquisitions prevent interferences between scanner noise and the auditory stimulus processing. Recent fMRI studies have shown that sparse temporal acquisition designs are advantageous over continuous scanning protocols on physiological, perceptual, and cognitive(More)