Learn More
Natural sounds are characterized by their spectral content and the modulation of energy over time. Using functional magnetic resonance imaging in awake macaques, we observed topographical representations of these spectral and temporal dimensions in a single structure, the inferior colliculus, the principal auditory nucleus in the midbrain. These(More)
Playing a musical instrument requires efficient auditory and motor processing. Fast feed forward and feedback connections that link the acoustic target to the corresponding motor programs need to be established during years of practice. The aim of our study is to provide a detailed description of cortical structures that participate in this audio-motor(More)
In non-human primates a scheme for the organization of the auditory cortex is frequently used to localize auditory processes. The scheme allows a common basis for comparison of functional organization across non-human primate species. However, although a body of functional and structural data in non-human primates supports an accepted scheme of nearly a(More)
PURPOSE In this EEG study we sought to examine the neuronal underpinnings of short-term plasticity as a top-down guided auditory learning process. We hypothesized, that (i) auditory imagery should elicit proper auditory evoked effects (N1/P2 complex) and a late positive component (LPC). Generally, based on recent human brain mapping studies we expected (ii)(More)
Playing a musical instrument requires efficient auditory as well as motor processing. We provide evidence for the existence of a neuronal network of secondary and higher-order areas belonging to the auditory and motor modality that is important in the integration of auditory and motor domains.
Instrumental tones and, in some instances, simple sine-wave tones were shown to evoke stronger auditory-evoked responses in musicians compared to nonmusicians. This effect was taken as an example for plasticity in the auditory cortex elicited by training. To date, however, it is unknown whether an enlarged cortical representation for (instrumental) tones or(More)
Non-human-primate fMRI is becoming increasingly recognised as the missing link between the widely applied methods of human imaging and intracortical animal electrophysiology. A crucial requirement for the optimal application of this method is the precise knowledge of the time course of the Blood Oxygenation Level Dependent (BOLD) signal. We mapped the BOLD(More)
Timbre is a major attribute of sound perception and a key feature for the identification of sound quality. Here, we present event-related brain potentials (ERPs) obtained from sixteen healthy individuals while they discriminated complex instrumental tones (piano, trumpet, and violin) or simple sine wave tones that lack the principal features of timbre. Data(More)
This event-related brain potential study aims to contribute to the present debate regarding the effect of musical training on the maturation of the human auditory nervous system. To address this issue, we recorded the mismatch negativity (MMN) evoked by violin and pure sine-wave tones in a group of 7.5- to 12-year-old children who had either several years(More)
To explore a new treatment strategy for urinary incontinence, human bone marrow mesenchymal stem cells (MSC) of the first in vitro passage were exposed to 5-azacytidine (AZA) to induce myogenic differentiation, and cultured for a total of six passages. Expression of stem cell surface antigens and intracellular alpha-actin was examined by flow cytometry at(More)