Simon B. Laughlin

Learn More
Anatomic and physiologic data are used to analyze the energy expenditure on different components of excitatory signaling in the grey matter of rodent brain. Action potentials and postsynaptic effects of glutamate are predicted to consume much of the energy (47% and 34%, respectively), with the resting potential consuming a smaller amount (13%), and(More)
Interneurons exhibiting centre--surround antagonism within their receptive fields are commonly found in peripheral visual pathways. We propose that this organization enables the visual system to encode spatial detail in a manner that minimizes the deleterious effects of intrinsic noise, by exploiting the spatial correlation that exists within natural(More)
Photoreceptor noise sets an absolute limit for the accuracy of colour discrimination. We compared colour thresholds in the honeybee (Apis mellifera) with this limit. Bees were trained to discriminate an achromatic stimulus from monochromatic lights of various wavelengths as a function of their intensity. Signal-to-noise ratios were measured by intracellular(More)
We derive experimentally based estimates of the energy used by neural mechanisms to code known quantities of information. Biophysical measurements from cells in the blowfly retina yield estimates of the ATP required to generate graded (analog) electrical signals that transmit known amounts of information. Energy consumption is several orders of magnitude(More)
The function of the intracellular pupil mechanism is examined by comparing the responses of photoreceptors in normal flies with those from white-eyed flies that lack the pupil. In white-eyed flies the response to an intensity increment of fixed contrast decreases at high background intensities. There is a smaller decrease in noise amplitude so that the(More)
We investigate the effects of synaptic transmission on early visual processing by examining the passage of signals from photoreceptors to second order neurons (LMCS). We concentrate on the roles played by three properties of synaptic transmission: (1) the shape of the characteristic curve, relating pre- and postsynaptic signal amplitudes, (2) the dynamics(More)
In many species, including humans, exposure to high image velocities induces motion adaptation, but the neural mechanisms are unclear. We have isolated two mechanisms that act on directionally selective motion-sensitive neurons in the fly's visual system. Both are driven strongly by movement and weakly, if at all, by flicker. The first mechanism, a(More)
1. From a comparison of the photoresponses and membrane properties of photoreceptors from 20 species of Diptera, we conclude that coding in the time domain is matched to the dictates of visual ecology. This matching involves the dynamics of phototransduction and the use of an appropriate mix of potassium conductances to tune the photoreceptor membrane. 2.(More)
1. The membrane properties of the photoreceptors of the blowfly (Calliphora vicina) were investigated in situ by making intracellular recordings in the intact retina, using discontinuous single-electrode current and voltage clamp techniques. Single channels were investigated using inside-out patches from dissociated photoreceptors. 2. Photoreceptors have a(More)