Simon A. A. Travers

Learn More
Protein evolution depends on intramolecular coevolutionary networks whose complexity is proportional to the underlying functional and structural interactions among sites. Here we present a novel approach that vastly improves the sensitivity of previous methods for detecting coevolution through a weighted comparison of divergence between amino acid sites.(More)
MOTIVATION In recent years there has been increased interest in producing large and accurate phylogenetic trees using statistical approaches. However for a large number of taxa, it is not feasible to construct large and accurate trees using only a single processor. A number of specialized parallel programs have been produced in an attempt to address the(More)
Currently, the identification of groups of amino acid residues that are important in the function, structure, or interaction of a protein can be both costly and prohibitively complex, involving vast numbers of mutagenesis experiments. Here, we present the application of a novel computational method, which identifies the presence of coevolution in a data(More)
Phylogenetic analysis is an area of computational biology concerned with the reconstruction of evolutionary relationships between organisms, genes, and gene families. Maximum likelihood evaluation has proven to be one of the most reliable methods for constructing phylogenetic trees. The huge computational requirements associated with maximum likelihood(More)
The env gene of human immunodeficiency virus (HIV) is a functionally important gene responsible for the production of protein products (gp120 and gp41) involved in host cell recognition, binding, and entry. This occurs through a complex and, as yet, not fully understood process of protein-protein interaction and within and between protein functional(More)
The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the(More)
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have(More)
  • 1