Learn More
The complex host-pathogen interplay involves the recognition of the pathogen by the host's innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens,(More)
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4(More)
Bacteria use type III secretion systems (TTSS) to translocate effector proteins into host cells. Better understanding of the TTSS and its effectors' functions will require assays to measure their activities in vivo and in real time. We designed a real-time, high-throughput translocation assay that utilizes fusions of effector genes to the beta-lactamase(More)
Upon infection of host cells, enteropathogenic Escherichia coli (EPEC) delivers a set of effector proteins into the host cell cytoplasm via the type III secretion system (TTSS). The effectors subvert various host cell functions. We found that EPEC interferes with the spreading and ultimately with the attachment of suspended fibroblasts or epithelial cells,(More)
The bacteriophage lambda cIII gene product is an early regulatory protein that participates in the lysis-lysogeny decision of the phage following infection. We have previously shown that the translation of the cIII gene is determined by two unique factors: (1) efficient expression is dependent upon the presence of RNaseIII in the cell; (2) alternative mRNA(More)
The complex host-pathogen interplay involves the recognition of the pathogen by the host’s innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kB, followed by inflammation and eradication of the intruders. In response, some pathogens, including(More)
The complex host-pathogen interplay involves the recognition of the pathogen by the host’s innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kB, followed by inflammation and eradication of the intruders. In response, some pathogens, including(More)
Enteropathogenic Escherichia coli (EPEC), a common cause of infant diarrhea, is associated with high risk of mortality in developing countries. The primary niche of infecting EPEC is the apical surface of intestinal epithelial cells. EPEC employs a type three secretion system (TTSS) to inject the host cells with dozens of effector proteins, which facilitate(More)
The mechanisms by which pathogens sense the host and respond by remodeling gene expression are poorly understood. Enteropathogenic Escherichia coli (EPEC), the cause of severe intestinal infection, employs a type III secretion system (T3SS) to inject effector proteins into intestinal epithelial cells. These effectors subvert host cell processes to promote(More)
  • 1