Learn More
Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein-tyrosine kinases (PTKs) and their substrates required for LPS-induced protein(More)
Bacterial lipopolysaccharide or endotoxin induces actin reorganization, increased paracellular permeability, and endothelial cell detachment from the underlying extracellular matrix in vitro. We studied the effect of endotoxin on transendothelial albumin flux and detachment of endothelial cells cultured on gelatin-impregnated filters. The endotoxin-induced(More)
Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight(More)
The pulmonary vascular endothelial paracellular pathway and zonula adherens (ZA) integrity are regulated, in part, through protein tyrosine phosphorylation. ZA-associated protein tyrosine phosphatase (PTP)s are thought to counterregulate tyrosine phosphorylation events within the ZA multiprotein complex. One such receptor PTP, PTPmu, is highly expressed in(More)
The intracellular signaling involved in the mechanism of action of zonula occludens toxin (ZOT) was studied using several in vitro and ex vivo models. ZOT showed a selective effect among various cell lines tested, suggesting that it may interact with a specific receptor, whose surface expression on various cells differs. When tested in IEC6 cell monolayers,(More)
Tumor necrosis factor (TNF)-alpha is a key mediator of sepsis-associated multiorgan failure, including the acute respiratory distress syndrome. We examined the role of protein tyrosine phosphorylation in TNF-alpha-induced pulmonary vascular permeability. Postconfluent human lung microvascular and pulmonary artery endothelial cell (EC) monolayers exposed to(More)
Fever has been a preoccupation of clinicians since medicine's beginning. One might therefore expect that basic concepts relating to this physiological response would be well delineated and that such concepts would be widely known. In fact, only in the past several decades has the febrile response been subjected to scientific scrutiny. As a result of recent(More)
The relative sensitivity of two insect cell lines to laminar shear stress was determined, and the protective effect of polymers added to the growth media of two insect cell lines, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), was evaluated. TN-368 and SF-9 cells were found to be equally sensitive to laminar shear stress. Methylcellulose [0.5%(More)
Severely head-injured patients are hypermetabolic/hypercatabolic and exhibit many aspects of the postinjury acute-phase response. These patients have hypoalbuminemia, hypozincemia, hypoferremia, hypercupria, fever, and increased synthesis of acute-phase proteins such as ceruloplasmin and higher C-reactive protein levels. It has been suggested that increased(More)
Tumor necrosis factor-alpha (TNF alpha) has been implicated as a mediator of pulmonary vascular endothelial injury. We studied the effect of human recombinant TNF alpha (rTNF alpha) on transfer of 14C-labeled bovine serum albumin (BSA) across cultured bovine pulmonary arterial endothelial cell monolayers. rTNF alpha induced a dose-, time-, and(More)