Silvina Mangano

Learn More
The control of potassium (K+) acquisition is a critical requirement for plant growth. Although HAK1 (high affinity K+ 1) transporters provide a pathway for K+ acquisition, the effect exerted by the ionic environment on their contribution to K+ capture remains essentially unknown. Here, the influence of the ionic environment on the accumulation of(More)
Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and improved NaCl, LiCl and NH4Cl tolerance, to yeast cells.(More)
Root hair cells and pollen tubes, like fungal hyphae, possess a typical tip or polar cell expansion with growth limited to the apical dome. Cell expansion needs to be carefully regulated to produce a correct shape and size. Polar cell growth is sustained by oscillatory feedback loops comprising three main components that together play an important role(More)
Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins,(More)
Transient assays provide a convenient alternative to stable transformation. Compared to the generation of stably transformed plants, agroinfiltration is more rapid, and samples can be analyzed a few days after inoculation. Nevertheless, at difference of tobacco and other plant species, Arabidopsis thaliana remains recalcitrant to routine transient assays.(More)
Instituto de Fisiología, Biología Molecular y Neurociencias (S.M.V., E.M., C.B., M.M.R., S.M., S.P.D.J., J.D.S.S., J.G.D., N.D.I., J.M.E.), and Departamento de Fisiología, Biología Molecular y Celular (N.D.I.), Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA,(More)
Root hair polar growth is endogenously controlled by auxin and sustained by oscillating levels of reactive oxygen species (ROS). These cells extend several hundred-fold their original size toward signals important for plant survival. Although their final cell size is of fundamental importance, the molecular mechanisms that control it remain largely unknown.(More)
Reactive oxygen species (ROS) are recognized as important signaling components in various processes in plants. ROS are produced for NADPH oxidase in different subcellular compartments and they are involved for a wide range of stimuli, such as cell cycle, growth, plant defenses, abiotic stress responses, and abscisic acid signaling in guard cells. In(More)
The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the(More)
Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and(More)