Learn More
An unsolved question is how platinum derivatives used for solid cancer therapy cause peripheral neuropathy in patients and apoptosis in "in vitro" models of chemotherapy-induced peripheral neuropathy. DRG neurons from E15 rat embryos were treated with toxic doses of oxaliplatin or cisplatin. Here, the role of MAPKs in neuronal apoptosis was studied. Both(More)
The involvement of the Mitogen-Activated Protein Kinases (MAPKs) family in platinum derivative-induced peripheral neuropathy has already been demonstrated. In particular, it has been evidenced that in Dorsal Root Ganglion (DRG) neurons prolonged exposure to oxaliplatin (OHP) induces early activation of p38 and ERK1/2, which mediate neuronal apoptosis, while(More)
The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine(More)
Prior studies suggested that the transcription factor ATF4 negatively regulates synaptic plastic and memory. By contrast, we provide evidence from direct in vitro and in vivo knockdown of ATF4 in rodent hippocampal neurons and from ATF4-null mice that implicate ATF4 as essential for normal synaptic plasticity and memory. In particular, hippocampal ATF4(More)
In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a(More)
  • 1