Silvia Pérez-Silanes

Learn More
OBJECTIVES To evaluate a novel series of quinoxaline 1,4-di-N-oxides for in vitro activity against Mycobacterium tuberculosis and for efficacy in a mouse model of tuberculosis (TB). METHODS Ketone and amide derivatives of quinoxaline 1,4-di-N-oxide were evaluated in in vitro and in vivo tests including: (i) activity against M. tuberculosis resistant to(More)
Pyrazole and propenone quinoxaline derivatives were tested against intracellular forms of Leishmania peruviana and Trypanosoma cruzi. Both series were tested for toxicity against proliferative and non-proliferative cells. The pyrazole quinoxaline series was quite inactive against T. cruzi; however, the compound 2,6-dimethyl-3-f-quinoxaline 1,4-dioxide was(More)
The increase in the prevalence of drug-resistant tuberculosis cases demonstrates the need of discovering new and promising compounds with antimycobacterial activity. As a continuation of our research and with the aim of identifying new antitubercular drugs candidates, a new series of quinoxaline 1,4-di-N-oxide derivatives containing isoniazid was(More)
In this paper, we report the structural design, synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazone (NAH) derivatives, planned as cruzain inhibitors candidates, a cysteine protease essential for the survival of Trypanosoma cruzi within the host cell. The salicylaldehyde N-acylhydrazones 7a and 8a presented IC(50) values(More)
In a search toward new and efficient antidepressants, 1-aryl-3-(4-arylpiperazin-1-yl)propane derivatives were designed, synthesized, and evaluated for 5-HT reuptake inhibition and 5-HT1A receptor antagonism. This dual pharmacological profile should lead, in principle, to a rapid and pronounced enhancement in serotoninergic neurotransmission and consequently(More)
Melanin-concentrating hormone (MCH) regulates feeding and energy homeostasis through interaction with its receptor, the melanin-concentrating receptor 1 (MCHR1), making it a target in the treatment of obesity. Molecular modeling and docking studies were performed in order to find a binding model for the docking of two new series of MCHR1 antagonists to the(More)
Continuing with our efforts to identify new active compounds against malaria and leishmaniasis, 14 new 3-amino-1,4-di-N-oxide quinoxaline-2-carbonitrile derivatives were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against Plasmodium falciparum Colombian FCR-3 strain and Leishmania amazonensis strain(More)
New series of 3-phenylquinoxaline 1,4-di-N-oxide with selective activity against Mycobacterium tuberculosis have been prepared and evaluated. Thirty-four of the seventy tested compounds showed an MIC value less than 0.2 microg/mL, a value on the order of the MIC of rifampicin. Furthermore, 45% of the evaluated derivatives showed a good in vitro(More)
For a fourth approach of quinoxaline N,N'-dioxides as anti-trypanosomatid agents against T. cruzi and Leishmania, we found extremely active derivatives. The present study allows us to state the correct requirements for obtaining optimal in vitro anti-T. cruzi activity. Derivatives possessing electron-withdrawing substituents in the 2-, 3-, 6-, and(More)