Silvia M. Sanz-González

Learn More
AP-1 (Activating Protein 1) transcription factor activity is tightly regulated at multiple levels, including dimer formation (i.e., Fos/Jun). Here we show that the intermediate filament protein lamin A/C suppresses AP-1 function through direct interaction with c-Fos, and that both proteins can interact and colocalize at the nuclear envelope (NE) in(More)
The tumor suppressor p53 is a transcription factor that is frequently inactivated in human tumors. Therefore, restoring its function has been considered an attractive approach to restrain cancer. Typically, p53-dependent growth arrest, senescence and apoptosis of tumor cells have been attributed to transcriptional activity of nuclear p53. Notably, wild-type(More)
OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these(More)
Insulin receptor substrate-2 (Irs2) mediates peripheral insulin action and is essential for retinal health. Previous investigations have reported severe photoreceptor degeneration and abnormal visual function in Irs2-deficient mice. However, molecular changes in the Irs2(-)(/)(-) mouse retina have not been described. In this study, we examined retinal(More)
OBJECTIVE The tumor suppressor p53 regulates cell proliferation and apoptosis, two key processes in the pathogenesis of occlusive vascular disease. Here, we examined the consequences of heightening p53 function on neointimal lesion formation in the setting of atherosclerosis and mechanical injury. METHODS For this study we employed immunohistopathological(More)
Early development of mammalian embryos occurs in an environment of relative hypoxia. Nevertheless, human embryonic stem cells (hESC), which are derived from the inner cell mass of blastocyst, are routinely cultured under the same atmospheric conditions (21% O(2)) as somatic cells. We hypothesized that O(2) levels modulate gene expression and differentiation(More)
Abnormal cellular proliferation is associated with the pathology of several diseases, including cancer, atherosclerosis and restenosis post-angioplasty. Therefore, antiproliferative therapies may be a suitable approach to treat these disorders. Candidate targets for such strategies include specific components of the cell cycle machinery. Progression through(More)
While quiescence is a defining characteristic of differentiated vascular smooth muscle cells (VSMCs) residing within the medial layer of elastic arteries in the adult organism, mature VSMCs can undergo phenotypic modulation and reenter the cell cycle in response to several physiological and pathological stimuli. Abnormal VSMC proliferation is thought to(More)
Platelet-derived growth factor (PDGF) ligand and receptors (PDGF-R) activate smooth muscle cell (SMC) proliferation, a key event during vascular obstructive disease. The PDGF-R tyrosine kinase inhibitor STI571 attenuates SMC proliferation and experimental neointimal thickening. Here, we investigated the molecular mechanisms underlying STI571-dependent SMC(More)
Early loss of P450 in rat hepatocyte cultures appears directly related to nitric oxide (NO) overproduction. This study provides experimental evidence for the induction - shortly after isolation through the classical procedure - of strong oxidative stress that involves both oxygen-derived and NO-derived species. NO formation at this stage is due to the early(More)