Learn More
Poly(ADP-ribose) (PAR) is a polymer synthesized by poly(ADP-ribose) polymerases (PARPs) and metabolized into free adenosine diphosphate (ADP)-ribose units by poly(ADP-ribose) glycohydrolase (PARG). Perturbations in PAR synthesis have been shown to play a key role in brain disorders including postischemic brain damage. A single parg gene but two PARG(More)
Poly(ADP-ribose)polymerase-1 (PARP-1) overactivation is a key event in neurodegeneration but the underlying molecular mechanisms wait to be unequivocally identified. Energy failure, transcriptional derangement and deadly nucleus-mitochondria cross-talk have been proposed as mechanisms responsible for PARP-1 neurotoxicity. In this study, we sought to(More)
Histone deacetylase inhibitors (HDACi) are emerging tools for epigenetic modulation of gene expression and suppress the inflammatory response in models of systemic immune activation. Yet, their effects within the brain are still controversial. Also, whether HDACs are expressed in astrocytes or microglia is unclear. Here, we report the identification of(More)
Poly(ADP-ribose) polymerase-1 (PARP-1)-dependent poly(ADP-ribose) formation is emerging as a key regulator of transcriptional regulation, even though the targets and underlying molecular mechanisms have not yet been clearly identified. In this study, we gathered information on the role of PARP-1 activity in the heat shock response of mouse fibroblasts. We(More)
Poly(ADP-ribose) (PAR) polymerase (PARP)-1 is a nuclear enzyme regulating protein that functions by targeting PAR chains. Besides its classic role in DNA repair, PARP-1 is emerging as a key transcriptional regulator in different cell types including the immune ones. In this study, we investigated the role of PARP-1 in human dendritic cell (DC) function. We(More)
Poly(ADP-ribose)-polymerase-1 (PARP-1) and poly(ADP-ribose) (PAR) are emerging key regulators of chromatin superstructure and transcriptional activation. Accordingly, both genetic inactivation of PARP-1 and pharmacological inhibition of PAR formation impair the expression of several genes, including those of the inflammatory response. In this study, we(More)
PURPOSE Polysaccharides are frequently used as viscoelastic agents to improve pharmacokinetics of ophthalmic preparations. Recently, polysaccharides from yeast cell walls such as beta-glucans have emerged as bioactive molecules endowed with immunomodulatory and cytoprotective properties. In this study, we investigated the effects of carboxymethyl(More)
High-mobility group protein box 1 (HMGB1), also know as amphoterin, is a nonhistone nuclear protein with well-established functions in gene transcription and homeostasis regulation into the cell nucleus. Interestingly, the protein can be passively released in the extracellular space during necrosis, whereas retained into the nucleus by cells undergoing(More)
  • 1